Как найти объем призмы

Призма

Призма – это многогранник, состоящий из двух равных многоугольников, расположенных в параллельных плоскостях, и $n$-го количества параллелограммов.

Многоугольники $ABCD$ и $A_1B_1C_1D_1$ – называются основаниями призмы.

Параллелограммы $АА_1В_1В, ВВ_1С_1С$ и т.д.- боковыми гранями.

Перпендикуляр, проведенный из какой-нибудь точки одного основания к плоскости другого основания, называется высотой призмы.

Если боковые ребра призмы перпендикулярны к основаниям, то призма называется прямой, в противном случае – наклонной. Высота прямой призмы равна ее боковому ребру.

Формулы вычисления объема и площади поверхности призмы:

Чтобы были понятны формулы, введем обозначения:

$P_<осн>$ — периметр основания;

$S_<осн>$ — площадь основания;

$S_<бок>$ — площадь боковой поверхности;

$S_<п.п>$ — площадь полной поверхности;

$h$ — высота призмы.

В основании призмы могут лежать различные многоугольники, рассмотрим площади некоторых из них.

В основании лежит треугольник.

  1. $S=/<2>$, где $h_a$ — высота, проведенная к стороне $а$
  2. $S=/<2>$, где $a,b$ — соседние стороны, $α$ — угол между этими соседними сторонами.
  3. Формула Герона $S=√$, где $р$ — это полупериметр $p=/<2>$
  4. $S=p·r$, где $r$ — радиус вписанной окружности
  5. $S=/<4R>$, где $R$ — радиус описанной окружности
  6. Для прямоугольного треугольника $S=/<2>$, где $а$ и $b$ — катеты прямоугольного треугольника.

В основании лежит четырехугольник

1. Прямоугольник

$S=a·b$, где $а$ и $b$ — смежные стороны.

2. Ромб

$S=/<2>$, где $d_1$ и $d_2$ — диагонали ромба

$S=a^2·sin⁡α$, где $а$ — длина стороны ромба, а $α$ — угол между соседними сторонами.

3. Трапеция

$S=<(a+b)·h>/<2>$, где $а$ и $b$ — основания трапеции, $h$ — высота трапеции.

Прямая призма называется правильной, если ее основания – правильные многоугольники.

Рассмотрим площади правильных многоугольников:

1. Для равностороннего треугольника $S=/<4>$, где $а$ — длина стороны.

$S=a^2$, где $а$ — сторона квадрата.

3. Правильный шестиугольник

Шестиугольник разделим на шесть правильных треугольников и найдем площадь как:

Найдите площадь поверхности прямой призмы, в основании которой лежит ромб с диагоналями, равными $10$ и $24$, а её боковое ребро равно $20$.

Построим прямую призму, в основании которой лежит ромб.

Распишем формулу площади полной поверхности:

В прямой призме высота равна боковому ребру, следовательно, $h=С_1С=20$

Чтобы найти периметр основания, надо узнать сторону ромба. Рассмотрим один из прямоугольных треугольников, получившихся, при пересечении диагоналей и воспользуемся теоремой Пифагора.

Диагонали точкой пересечения делятся пополам, поэтому катеты прямоугольного треугольника равны $5$ и $12$.

Теперь найдем площадь основания: площадь ромба равна половине произведения его диагоналей.

Далее подставим все найденные величины в формулу полной поверхности и вычислим ее:

Цилиндр — это та же призма, в основании которой лежит круг.

Подобные призмы: при увеличении всех линейных размеров призмы в $k$ раз, её объём увеличится в $k^3$ раз.

Средняя линия треугольника параллельна основанию и равна его половине.

$MN$ — средняя линия, так как соединяет середины соседних сторон.

Подобие треугольников

Два треугольника называются подобными, если их углы соответственно равны, а стороны одного треугольника больше сходственных сторон другого треугольника в некоторое число раз.

Число $k$ — коэффициент подобия (показывает во сколько раз стороны одного треугольника больше сторон другого треугольника.)

  1. Периметры подобных треугольников и их линейные величины (медианы, биссектрисы, высоты) относятся друг к другу как коэффициент подобия $k$.
  2. Отношение площадей двух подобных треугольников равно квадрату коэффициента подобия.

Прямоугольный треугольник и его свойства:

В прямоугольном треугольнике катетами называются две стороны треугольника, которые образуют прямой угол. Гипотенузой называется сторона, лежащая напротив прямого угла.

Некоторые свойства прямоугольного треугольника:

  1. Сумма острых углов в прямоугольном треугольнике равна $90$ градусов.
  2. Катет прямоугольного треугольника, лежащий напротив угла в $30$ градусов, равен половине гипотенузы. (Этот катет называется малым катетом.)

Теорема Пифагора

В прямоугольном треугольнике сумма квадратов катетов равна квадрату гипотенузы.

Соотношение между сторонами и углами в прямоугольном треугольнике:

В прямоугольном треугольнике $АВС$, с прямым углом $С$

Для острого угла $В: АС$ — противолежащий катет; $ВС$ — прилежащий катет.

Для острого угла $А: ВС$ — противолежащий катет; $АС$ — прилежащий катет.

  1. Синусом (sin) острого угла прямоугольного треугольника называется отношение противолежащего катета к гипотенузе.
  2. Косинусом (cos) острого угла прямоугольного треугольника называется отношение прилежащего катета к гипотенузе.
  3. Тангенсом (tg) острого угла прямоугольного треугольника называется отношение противолежащего катета к прилежащему.
  4. Котангенсом (ctg) острого угла прямоугольного треугольника называется отношение прилежащего катета к противолежащему.
  5. В прямоугольном треугольнике синус одного острого угла равен косинусу другого острого угла.
  6. Синусы, косинусы, тангенсы и котангенсы острых равных углов равны.
  7. Синусы смежных углов равны, а косинусы, тангенсы и котангенсы отличаются знаками: для острых углов положительные значения, для тупых углов отрицательные значения

Значения тригонометрических функций некоторых углов:

$α$ $30$ $45$ $60$
$sinα$ $<1>/<2>$ $<√2>/<2>$ $<√3>/<2>$
$cosα$ $<√3>/<2>$ $<√2>/<2>$ $<1>/<2>$
$tgα$ $<√3>/<3>$ $1$ $√3$
$ctgα$ $√3$ $1$ $<√3>/<3>$

Теорема синусов

Во всяком треугольнике стороны относятся как синусы противолежащих углов:

Теорема косинусов

Квадрат одной из сторон треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними:

Треугольная призма — это трехмерное тело, образованное соединением прямоугольников и треугольников. В этом уроке вы узнаете, как найти размер внутри (объем) и снаружи (площадь поверхности) треугольной призмы.

Определение

Треугольная призма — это пятигранник, образованный двумя параллельными плоскостями, в которых расположены два треугольника, образующих две грани призмы, и оставшиеся три грани — параллелограммы, образованные со-сторонами треугольников.

Элементы треугольной призмы

Треугольники ABC и A1B1C1 являются основаниями призмы .

Четырехугольники A1B1BA, B1BCC1 и A1C1CA являются боковыми гранями призмы .

Стороны граней являются ребрами призмы (A1B1, A1C1, C1B1, AA1, CC1, BB1, AB, BC, AC), всего у треугольной призмы 9 граней.

Высотой призмы называется отрезок перпендикуляра, который соединяет две грани призмы (на рисунке это h).

Диагональю призмы называется отрезок, который имеет концы в двух вершинах призмы, не принадлежащих одной грани. У треугольной призмы такой диагонали провести нельзя.

Площадь основания — это площадь треугольной грани призмы.

Площадь боковой поверхности призмы — это сумма площадей четырехугольных граней призмы.

Виды треугольных призм

Треугольная призма бывает двух видов: прямая и наклонная.

У прямой призмы боковые грани прямоугольники, а у наклонной боковые грани — параллелограммы (см. рис.)

Прямая треугольная призма

Призма, боковые ребра которой перпендикулярны плоскостям оснований, называется прямой.

Наклонная треугольная призма

Призма, боковые ребра которой являются наклонными к плоскостям оснований, называется наклонной.

Основные формулы для расчета треугольной призмы

Объем треугольной призмы

Чтобы найти объем треугольной призмы, надо площадь ее основания умножить на высоту призмы.

Объем призмы = площадь основания х высота

Площадь боковой поверхности призмы

Чтобы найти площадь боковой поверхности треугольной призмы, надо периметр ее основания умножить на высоту.

Площадь боковой поверхности треугольной призмы = периметр основания х высота

Площадь полной поверхности призмы

Чтобы найти площадь полной поверхности призмы, надо сложить ее площади оснований и площадь боковой поверхности.

так как Sбок=Pосн . h, то получим:

Правильная призма — прямая призма, основанием которой является правильный многоугольник.

Свойства призмы :

Верхнее и нижнее основания призмы – это равные многоугольники.
Боковые грани призмы имеют вид параллелограмма.
Боковые ребра призмы параллельные и равны.

Совет: при расчете треугольной призмы вы должны обратить внимание на используемые единицы. Например, если площадь основания указана в см 2 , то высота должна быть выражена в сантиметрах, а объем — в см 3 . Если площадь основания в мм 2 , то высота должна быть выражена в мм, а объем в мм 3 и т. д.

Пример призмы

В этом примере:
— ABC и DEF составляют треугольные основания призмы
— ABED, BCFE и ACFD являются прямоугольными боковыми гранями
— Боковые края DA, EB и FC соответствуют высоте призмы.
— Точки A, B, C, D, E, F являются вершинами призмы.

Задачи на расчет треугольной призмы

Задача 1. Основанием прямой треугольной призмы служит прямоугольный треугольник с катетами 6 и 8, боковое ребро равно 5. Найдите объем призмы.
Решение: Объем прямой призмы равен V = Sh, где S — площадь основания, а h — боковое ребро. Площадь основания в данном случае это площадь прямоугольного треугольника (его площадь равна половине площади прямоугольника со сторонами 6 и 8). Таким образом, объём равен:

V = 1/2 · 6 · 8 · 5 = 120.

Задача 2.

Через среднюю линию основания треугольной призмы проведена плоскость, параллельная боковому ребру. Объем отсеченной треугольной призмы равен 5. Найдите объем исходной призмы.

Решение:

Объём призмы равен произведению площади основания на высоту: V = Sосн ·h.

Треугольник, лежащий в основании исходной призмы подобен треугольнику, лежащему в основании отсечённой призмы. Коэффициент подобия равен 2, так как сечение проведено через среднюю линию (линейные размеры большего треугольника в два раза больше линейных размеров меньшего). Известно, что площади подобных фигур соотносятся как квадрат коэффициента подобия, то есть S2 = S1k 2 = S12 2 = 4S1.

Площадь основания всей призмы больше площади основания отсечённой призмы в 4 раза. Высоты обеих призм одинаковы, поэтому объем всей призмы в 4 раза больше объема отсечённой призмы.

Объем куба

Объем куба равен кубу длины его грани.

Формула объема куба:

Объем призмы

Объем призмы равен произведению площади основания призмы, на высоту.

Формула объема призмы:

Объем параллелепипеда

Объем параллелепипеда равен произведению площади основания на высоту.

Формула объема параллелепипеда:

Объем прямоугольного параллелепипеда

Объем прямоугольного параллелепипеда равен произведению его длины, ширины и высоты.

Формула объема прямоугольного параллелепипеда:

Объем пирамиды

Объем пирамиды равен трети от произведения площади ее основания на высоту.

Формула объема пирамиды:

V = 1 So · h
3

Объем правильного тетраэдра

Формула объема правильного тетраэдра:

V = a 3 √ 2
12

Объем цилиндра

Объем цилиндра равен произведению площади его основания на высоту.

Формулы объема цилиндра:

Объем конуса

Объем конуса равен трети от произведению площади его основания на высоту.

Формулы объема конуса:

V = 1 π R 2 h
3
V = 1 So h
3

Объем шара

Объем шара равен четырем третьим от его радиуса в кубе помноженного на число пи.

Формула объема шара:

V = 4 π R 3
3

Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!

Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.

На этой странице вы узнаете, что такое призма и как найти объем правильной треугольной или любой другой призмы. Также приведены формулы и онлайн-калькуляторы для расчёта объёма правильной треугольной призмы и призмы в общем случае.

Призма — это объёмная фигура, 2 грани которой являются равными многоугольниками, лежащими в параллельных плоскостях, а остальные грани представляют собой параллелограммы. Грани, лежащие в параллельных плоскостях, называются основаниями, а параллелограммы, имеющие общие стороны с основаниями, называются боковыми гранями.

Объем призмы через площадь основания и высоту

В общем случае объём любой призмы вне зависимости от того, правильная она или нет, определяется по формуле:

$V = S cdot h$, где

$S$ — площадь многоугольника, лежащего в основании;

$h$ — высота призмы.

Для того чтобы воспользоваться онлайн-калькулятором для вычисления площади призмы с произвольным многоугольником в основании, введите значение площади основания и высоту призмы.

Готовые работы на аналогичную тему

  • Курсовая работа Объем призмы 440 руб.
  • Реферат Объем призмы 240 руб.
  • Контрольная работа Объем призмы 220 руб.

Задача

Рассчитайте, чему равен объём призмы, основание которой является правильным пятиугольником со стороной $b=5$ см, а высота $h$ равна $7$ см.

Решение:

Для того чтобы найти объём призмы, сначала необходимо найти площадь её основания. Для этого воспользуемся формулой для вычисления площади правильного многогранника:

Теперь найдём объём призмы:

$V = S cdot h = 42,81 cdot 7 = 299,67$ куб. см.

Ответ: $299,67$.

Введём заданные значения в поля ввода калькулятора. Результаты совпадают, а значит, ответ найден верно.

Один из наиболее часто встречающихся видов призм — это полуправильная треугольная. В основании такой призмы лежит правильный треугольник (то есть, треугольник, у которого все стороны равны), а боковыми гранями являются прямоугольники.

Расчёт объёма полуправильной треугольной призмы можно осуществить с помощью онлайн-калькулятора. Для этого введите длину ребра и сторону основания в соответствующие поля ввода.

Объем правильной треугольной призмы через ребро

Чтобы вычислить объём правильной треугольной призмы, необходимо воспользоваться формулой объёма для призмы в общем случае:

затем подставим в эту формулу значение площади для правильного треугольника и получим:

$V =frac <4>cdot b^2 cdot h$, здесь

$h$ — высота призмы;

$b$ — сторона правильного треугольника, лежащего в основании.

Задача

Сторона $b$ правильного треугольника, лежащего в основании призмы, равна $6$ см, а высота призмы составляет $9$ см. Определите объём призмы.

Решение:

Воспользуемся формулой для определения объема треугольной призмы:

Сверим полученный результат с калькулятором — ответы совпадают, значит, решение найдено верно.

Введем следующие обозначения:

V объем призмы
Sбок площадь боковой поверхности призмы
Sполн площадь полной поверхности призмы
Sосн площадь основания призмы
Pосн периметр основания призмы
Pперп периметр перпендикулярного сечения призмы
Sперп площадь перпендикулярного сечения призмы

Используя эти обозначения, составим таблицу с формулами для вычисления объемов, площадей боковой поверхности и площадей полной поверхности различных видов призм.

Формулы для объема, площади боковой и полной поверхности:

Формулы для объема, площади боковой и полной поверхности:

Формулы для объема, площади боковой и полной поверхности:

Формулы для объема, площади боковой и полной поверхности:

Формулы для объема, площади боковой и полной поверхности:

Формулы для объема, площади боковой и полной поверхности:

Формулы для объема, площади боковой и полной поверхности:

Замечание 1. С понятием призмы и различными видами призм можно ознакомиться в разделе «Призмы».

Замечание 2. С определением сечения призмы и способами построения сечений призмы можно ознакомиться в разделе «Сечения призмы. Перпендикулярные сечения призмы».

Любое твердое тело в трехмерном пространстве обладает некоторым объемом. Вычислением этой характеристики геометрических фигур занимается стереометрия. В данной статье рассмотрим, что такое призма треугольная, и по какой формуле объем призмы треугольной может быть рассчитан.

Треугольная призма

Эта фигура относится к классу призм, поэтому она, как любой представитель этого класса, состоит из двух одинаковых и параллельных оснований и параллелограммов. Основаниями являются треугольники произвольного типа (равносторонние, равнобедренные, прямоугольные и другие), боковые же стороны могут быть произвольными параллелограммами, ромбами, квадратами и прямоугольниками. Число боковых сторон равно трем. Рисунок ниже демонстрирует, о какой фигуре пойдет речь.

На этом рисунке мы видим геометрическую фигуру, которая состоит из пяти сторон, девяти ребер и шести вершин. Стороны мы уже охарактеризовали. Что касается ребер, то любое из них можно отнести к одному из двух типов: либо ребро принадлежит одному из оснований (в этом случае оно является стороной треугольного основания), либо оно образовано пересечением боковых граней (боковое ребро). Важным свойством призмы является равенство всех ее боковых ребер.

Все треугольные призмы классифицируются по двум признакам:

  • прямые и наклонные;
  • правильные и неправильные.

Прямая призма обладает прямоугольными боковыми сторонами. Если ее основания будут равносторонними треугольниками, тогда она будет правильной. Далее мы приведем формулы объема призмы треугольной прямой, правильной фигуры, призмы с прямоугольным треугольником и фигуры наклонной.

Как рассчитывать объем фигуры произвольного типа?

Часть пространства, которая ограничена плоскими сторонами геометрической фигуры, называется ее объемом. В общем случае для призмы абсолютно любого типа справедлива следующая формула для определения ее объема:

Как видно, она очень проста и содержит всего два множителя: So — площадь одного основания, h — высота призмы, то есть дистанция между ее основаниями.

Применительно к треугольной призме произвольной формы (наклонной и неправильной), для вычисления величины So можно воспользоваться универсальной формулой для треугольника:

Здесь a — сторона треугольника, ha — высота треугольника, опущенная на сторону a.

Расчет высоты h призмы можно провести с использованием теоремы Пифагора, если знать длину бокового ребра b и двугранные углы между основанием и боковыми гранями.

Формула объема треугольной призмы правильной

Многогранник, который мы изучаем, будет правильным, если две его грани являются одинаковыми треугольниками равносторонними и три грани — это одинаковые прямоугольники. Формулу для объема такой призмы несложно получить из выражения общего вида, записанного в пункте выше. Чтобы это сделать, рассчитаем сначала площадь основания:

So = 1 / 2 × ha × a = 1 / 2 × √3 / 2 × a × a = √3 / 4 × a2

Значение высоты треугольника ha получено, исходя из того факта, что для равностороннего основания она является также медианой и биссектрисой. Таким образом, площадь So является функцией только одного параметра (стороны a).

Формулу объема для изучаемой призмы можно получить, если умножить на высоту выражение выше:

Поскольку для рассматриваемой фигуры высота равна длине бокового ребра b, то полученное выражение также можно переписать через параметры a и b.

Объем прямой фигуры с прямоугольным треугольником в основании

Прямоугольный треугольник представляет собой фигуру из трех сторон, две из которых пересекаются под прямым углом. Эти стороны называются катетами. Обозначим их a1 и a2. Третья сторона называется гипотенузой (a3). Из планиметрии известно каждому школьнику, что если взять половину произведения катетов, то можно получить площадь рассматриваемого треугольника, то есть:

Так как призма является прямой, то достаточно умножить на So длину ее бокового ребра b, чтобы получить объем фигуры:

Объем правильной фигуры через значение ее диагонали

Треугольная призма является самой простой фигурой из своего класса, поэтому она обладает всего одним единственным типом диагонали. Это диагонали трех ее параллелограммов.

Предположим, что имеется правильная фигура, диагональ которой равна d (это диагональ прямоугольника), а высота равна h. Как рассчитать ее объем?

Для начала следует определить значение стороны основания a. Для этого воспользуемся теоремой Пифагора:

Тогда формула объема треугольной призмы приобретает вид:

V = √3 / 4 × a2 × h = √3 / 4 × (d2 — h2) × h

В случае правильной призмы объем всегда является функцией двух параметров (h и d в данном выражении).

1. Объём прямой треугольной призмы.

Начертим отдельно основание призмы, т. е. треугольник АBС (рис. 307, а), и достроим его до прямоугольника, для чего через вершину В проведём прямую КМ || АС и из точек A и С опустим на эту прямую перпендикуляры АF и СЕ. Получим прямоугольник АСЕF. Проведя высоту ВD треугольника АBС, увидим, что прямоугольник АСЕF разбился на 4 прямоугольных треугольника. Причём (Delta)ВСЕ = (Delta)BCD и (Delta)BAF = (Delta)BAD. Значит, площадь прямоугольника АСЕF вдвое больше площади треугольника АBС, т. е. равна 2S.

К данной призме с основанием АBС пристроим призмы с основаниями ВСЕ и BАF и высотой h (рис. 307, б). Получим прямоугольный параллелепипед с основанием АСЕF.

Если этот параллелепипед рассечём плоскостью, проходящей через прямые BD и BB’, то увидим, что прямоугольный параллелепипед состоит из 4 призм с основаниями BCD, ВСЕ, BАD и BAF.

Призмы с основаниями BCD и ВСЕ могут быть совмещены, так как основания их равны ((Delta)BCD = (Delta)BСЕ) и также равны их боковые рёбра, являющиеся перпендикулярами к одной плоскости. Значит, объёмы этих призм равны. Также равны объёмы призм с основаниями BАD и BАF.

Таким образом, оказывается, что объём данной треугольной призмы с основанием АBС вдвое меньше объёма прямоугольного параллелепипеда с основанием АСЕF.

Нам известно, что объём прямоугольного параллелепипеда равен произведению площади его основания на высоту, т. е. в данном случае равен 2Sh. Отсюда объём данной прямой треугольной призмы равен Sh.

Объём прямой треугольной призмы равен произведению площади её основания на высоту.

2. Объём прямой многоугольной призмы.

Обозначив площади основания треугольных призм через S1, S2и S3, а объём данной многоугольной призмы через V, получим:

И окончательно: V = Sh.

Таким же путём выводится формула объема прямой призмы, имеющей в основании любой многоугольник.

Значит, объём любой прямой призмы равен произведению площади её основания на высоту.

Объём призмы

Теорема. Объём призмы равен произведению площади основания на высоту.

Сначала докажем эту теорему для треугольной призмы, а потом и для многоугольной.

1) Проведём (черт. 95) через ребро AA1 треугольной призмы АВСА1В1С1 плоскость, параллельную грани ВВ1С1С, а через ребро СС1 — плоскость, параллельную грани AA1B1B; затем продолжим плоскости обоих оснований призмы до пересечения с проведёнными плоскостями.

Тогда мы получим параллелепипед BD1, который диагональной плоскостью АА1С1С делится на две треугольные призмы (из них одна есть данная). Докажем, что эти призмы равновелики. Для этого проведём перпендикулярное сечение abcd. В сечении получится параллелограмм, который диагональю ас делится на два равных треугольника. Данная призма равновелика такой прямой призме, у которой основание есть (Delta)аbc, а высота — ребро АА1. Другая треугольная призма равновелика такой прямой, у которой основание есть (Delta)аdс, а высота — ребро АА1. Но две прямые призмы с равными основаниями и равными высотами равны (потому что при вложении они совмещаются), значит, призмы АВСА1В1С1 и ADCA1D1C1 равновелики. Из этого следует, что объём данной призмы составляет половину объёма параллелепипеда BD1; поэтому, обозначив высоту призмы через H, получим:

2) Проведём через ребро АА1 многоугольной призмы (черт. 96) диагональные плоскости АА1С1С и AA1D1D.

Тогда данная призма рассечётся на несколько треугольных призм. Сумма объёмов этих призм составляет искомый объём. Если обозначим площади их оснований через b1, b2, b3, а общую высоту через Н, то получим:

объём многоугольной призмы = b1• H +b2• H + b3• H =(b1 + b2+ b3 ) • H =

= (площади ABCDE) • H.

Следствие. Если V, В и Н будут числа, выражающие в соответствующих единицах объём, площадь основания и высоту призмы, то, по доказанному, можно написать: