Прежде чем ответить на вопрос о том, как найти периметр треугольника, повторим, что называется периметром треугольника.
Определение.
Периметром треугольника называется сумма длин его сторон.
Формула периметра треугольника для треугольника АВС
Если назвать треугольник другими буквами, формула периметра треугольника, соответственно, тоже будет выглядеть иначе.
Например, формула периметра треугольника MNP:
В общем виде формулу периметра треугольника записывают так:
где а, b и с — длины сторон треугольника.
Таким образом, чтобы найти периметр треугольника, надо сложить длины всех его сторон.
1) Найти периметр треугольника со сторонами 3 см, 4 см, 5 см.
По формуле для нахождения периметра треугольника
2) Найти периметр треугольника АВС, если АВ=10 см, ВС=12 см, АС=15 см.
Как найти периметр треугольников отдельных видов — равнобедренного и равностороннего — мы посмотрим позже.
Определение
Периметром принято называть длину всех сторон многоугольника. Периметр обозначается заглавной латинской буквой P. Под «P» удобно писать маленькими буквами название фигуры, чтобы не запутаться в задачах и ходе решении.
Важно, чтобы все параметры были переданы в одной единице длины, иначе мы не сможем подсчитать результат. Поэтому для правильного решения необходимо перевести все данные к одной единице измерения.
В чем измеряется периметр:
- квадратный миллиметр (мм 2 );
- квадратный сантиметр (см 2 );
- квадратный дециметр (дм 2 );
- квадратный метр (м 2 );
- квадратный километр (км 2 );
- гектар (га).
Как узнать периметр треугольника
Рассмотрим какие существуют формулы, и при каких известных исходных данных их можно применять.
Если известны три стороны, то периметр треугольника равен их сумме. Этот способ проходят во втором классе.
P = a + b + c, где a, b, c — длина стороны.
Если известна площадь и радиус вписанной окружности:
P = 2 * S : r, где S — площадь, r — радиус вписанной окружности.
Если известны две стороны и угол между ними, вычислить периметр треугольника можно так:
P = √ b 2 + с 2 — 2 * b * с * cosα + (b + с), где b, с — известные стороны, α — угол между известными сторонами.
Если известна одна сторона в равностороннем треугольнике:
P = 3 * a, где a — длина стороны.
Все стороны в равносторонней фигуре равны.
Если известна боковая сторона и основание в равнобедренном треугольнике:
P = 2 * a + b, где a — боковая сторона, b — основание.
Боковые стороны в равнобедренной фигуре равны.
Если известна боковая сторона и высота в равнобедренном треугольнике:
P = 2 * (√ a 2 + h 2 ) + 2 * a, где a — боковая сторона, h — высота.
Высотой принято называть отрезок, который вышел из вершины и опустился на основание. В равнобедренной фигуре высота делит основание пополам.
Если известны катеты в прямоугольном треугольнике:
P = √ a 2 + b 2 + (a + b), где a, b — катеты.
Катет — одна из двух сторон, которые образуют прямой угол.
Если известны катет и гипотенуза в прямоугольном треугольнике:
P = √ c 2 — a 2 + (a + c), где a — любой катет, c — гипотенуза.
Гипотенуза — сторона, которая лежит напротив прямого угла.
Скачать онлайн таблицу
У каждой геометрической фигуры много формул — запомнить все сразу бывает действительно сложно. В этом деле поможет регулярное решение задач и частый просмотр формул. Можно распечатать эту таблицу и использовать, как закладку в тетрадке или учебнике, и обращаться к ней по необходимости.
Чтобы ребенок еще лучше учился в школе, запишите его на уроки математики. Лето — прекрасное время, чтобы заниматься ей с удовольствием, в комфортном темпе, без контрольных и оценок за четверть, валяясь дома на полу или за городом на травке.
Вместо скучных параграфов ребенка ждут интерактивные упражнения с мгновенной автоматической проверкой. Наши преподаватели понятно объяснят что угодно — от дробей до синусов — и ответят на вопросы, которые бывает неловко задать перед всем классом.
Работы любой сложности
Квалифицированная помощь от опытных авторов
- Периметр треугольника
- Способы нахождения
- По трем сторонам
- По площади и радиусу вписанной окружности
- По двум сторонам и углу между ними
- По боковой стороне и высоте (для равнобедренного)
- По двум катетам (для прямоугольного)
- Примеры решения задач
- Задача №1
- Задача №2
- Задача №3
- Задача №4
- Задача №5
- Периметр треугольника
- Способы нахождения
- По трем сторонам
- По площади и радиусу вписанной окружности
- По двум сторонам и углу между ними
- По боковой стороне и высоте (для равнобедренного)
- По двум катетам (для прямоугольного)
- Примеры решения задач
- Задача №1
- Задача №2
- Задача №3
- Задача №4
- Задача №5
Учимся находить периметр треугольника разными способами, а также тренируем полученные знания на примерах задач.
Периметр треугольника
Периметр треугольника — это сумма длин всех его сторон.
Треугольник — это геометрическая фигура, которая состоит из трех точек (вершин), не лежащих на одной прямой. Эти точки попарно соединены тремя отрезками, которые называются сторонами (ребрами) многоугольника.
Рассмотрим несколько способов нахождения периметра рассматриваемой фигуры. Каждая из предложенных формул опирается на те величины, которые нам уже известны.
Способы нахождения
По трем сторонам
Если мы уже знаем длину каждого ребра фигуры, расчет периметра будет проходить так:
где a, b и с — это стороны треугольника.
В случае, если нам известны стороны равнобедренного треугольника (у которого два ребра равны), формула для расчета периметра выглядит следующим образом:
где a — основание фигуры, а b и с — равные ребра.
Треугольник может также быть равносторонним (когда все стороны равны). Тогда P будем находить в соответствии с расчетами:
где a — это любая сторона фигуры.
По площади и радиусу вписанной окружности
Когда нам известна площадь данного многоугольника и радиус вписанной в него окружности, расчет P выглядит так:
где S — площадь фигуры, r — радиус вписанной в нее окружности.
По двум сторонам и углу между ними
Так как нам известен угол и две стороны, которыми он образован, мы можем найти третью сторону треугольника по теореме косинусов. И потом уже вычислить сумму длин всех ребер фигуры.
Теорема косинусов выглядит так:
где α — известный угол.
Тогда формула для расчета периметра всей фигуры в этом случае:
По боковой стороне и высоте (для равнобедренного)
Возвращаясь к свойствам равнобедренного треугольника, вспоминаем, что высота, проведенная к основанию треугольника из противоположной вершины, является одновременно высотой, биссектрисой и медианой. Это значит, что оба прямоугольных треугольника, которые она образует, равны между собой.
Формула для поиска периметра нашего равнобедренного будет опираться на теорему Пифагора. Пусть 1/2 основания (с) = d. Тогда:
где a — сторона равнобедренного треугольника и гипотенуза прямоугольного, h — высота равнобедренного и катет прямоугольного.
Не забываем, что d — это лишь половина основания равнобедренного треугольника, поэтому для поиска периметра результат нужно будет умножить на 2.
По двум катетам (для прямоугольного)
Еще раз вспомним теорему Пифагора для нахождения гипотенузы (обозначим ее буквой с).
где a и b — катеты треугольника.
Подставляем значение c в формулу для нахождения периметра и получаем:
Примеры решения задач
Для тренировки полученных знаний, рассмотрим несколько примеров решения задач на поиск периметра треугольника.
Задача №1
Какой P треугольника, если его стороны равны 6 см, 7 см и 3 см.
Решение:
Подставляем в формулу P = a+b+c известные величины и получаем: P = 6+7+3=16 см.
Задача №2
Известно, что основание равнобедренного треугольника равно 6 см, а его боковая сторона — 4 см. Найти P фигуры.
Решение:
Для данного случая подходит формула P=a+2b, подствляем значения: (P=6+4times2 = 14) см.
Задача №3
Нам известно, что площадь треугольника — 24 см 2 , а радиус вписанной в него окружности — 8 см. Найти P.
Решение:
В данном случае рассчитывать P будем следующим образом: (P=frac<2S>r) . С уже известными нам величинами получаем: (P=frac<2times24>8 = 6) см.
Задача №4
Дан равнобедренный треугольник. Нам известна его боковая сторона (4 см) и высота, опущенная к основанию (2 см). Нужно вычислить периметр фигуры.
Решение:
Мы знаем, что в этом случае P вычисляется, как (P=2sqrt+2a) . С имеющимися значениями получается: (P=2sqrt<4^2-2^2>+2times2 = 4sqrt3+4) см.
Ответ: P=4sqrt3+4 см.
Задача №5
Дан прямоугольный треугольник с катетами 5 см и 7 см. Определить периметр фигуры.
Решение:
В формулу (P=sqrt+a+b) подставляем известные значения: (P=sqrt<5^2+7^2>+5+7 = sqrt<74>+12) см.
Получите помощь лучших авторов по вашей теме
В данной публикации мы рассмотрим, каким образом можно посчитать периметр треугольника и разберем примеры решения задач.
- Формула вычисления периметра
- Примеры задач
Формула вычисления периметра
Периметр (P) треугольника равняется сумме длин его сторон.
P = a + b + c
Периметр равнобедренного треугольника
Равнобедренным называют треугольник, у которого две боковые стороны равны (b=c). Сторона a, имеющая отличную от боковых длину, является основанием. Таким образом, периметр можно считать так:
P = a + 2b или P = a + 2c
Примеры задач
Задание 1
Найдите периметр треугольника, если его стороны равны: 3, 4 и 5 см.
Решение:
Подставляем в формулу известные по условиям задачи величины и получаем: P = 3 см + 4 см + 5 см = 12 см.
Задание 2
Найдите периметр равнобедренного треугольника, если его основание равняется 10 см, а боковая сторона- 8 см.
Решение:
Как мы знаем, боковые стороны равнобедренного треугольника равны, следовательно: P = 10 см + 2 * 8 см = 26 см.
Выбирайте формулу в зависимости от известных величин.
1. Как найти периметр треугольника, зная три стороны
Просто посчитайте сумму всех сторон.
Иллюстрация: Лайфхакер
- P — искомый периметр;
- a, b, c — стороны треугольника.
Сейчас читают 🔥
2. Как найти периметр треугольника, зная его площадь и радиус вписанной окружности
Умножьте площадь треугольника на 2.
Разделите результат на радиус вписанной окружности.
Иллюстрация: Лайфхакер
- P — искомый периметр;
- S — площадь треугольника;
- r — радиус вписанной окружности.
3. Как вычислить периметр треугольника, зная две стороны и угол между ними
Сначала найдите неизвестную сторону треугольника с помощью теоремы косинусов:
- Умножьте одну сторону на вторую, на косинус угла между ними и на 2.
- Посчитайте сумму квадратов известных сторон и отнимите от неё число, полученное в предыдущем действии.
- Найдите корень из результата.
Теперь прибавьте к найденной стороне две ранее известные стороны.
Иллюстрация: Лайфхакер
- P — искомый периметр;
- b, c — известные стороны треугольника;
- ɑ — угол между известными сторонами;
- a — неизвестная сторона треугольника.
4. Как найти периметр равностороннего треугольника, зная одну сторону
Умножьте сторону на 3.
Иллюстрация: Лайфхакер
- P — искомый периметр;
- a — любая сторона треугольника (напомним, в равностороннем треугольнике все стороны равны).
5. Как вычислить периметр равнобедренного треугольника, зная боковую сторону и основание
Умножьте боковую сторону на 2.
Прибавьте к результату основание.
Иллюстрация: Лайфхакер
- P — искомый периметр;
- a — боковая сторона треугольника (в равнобедренном треугольнике боковые стороны равны);
- b — основание треугольника (это сторона, которая отличается длиной от остальных).
6. Как найти периметр равнобедренного треугольника, зная боковую сторону и высоту
Найдите квадраты боковой стороны и высоты.
Отнимите от первого числа второе.
Найдите корень из результата и умножьте его на 2.
Прибавьте к полученному числу две боковые стороны.
Иллюстрация: Лайфхакер
- P — искомый периметр;
- a — боковая сторона треугольника;
- h — высота (перпендикуляр, опущенный на основание треугольника со стороны противоположной вершины; в равнобедренном треугольнике высота делит основание пополам).
7. Как вычислить периметр прямоугольного треугольника, зная катеты
Найдите квадраты катетов и посчитайте их сумму.
Извлеките корень из полученного числа.
Прибавьте к результату оба катета.
Иллюстрация: Лайфхакер
- P — искомый периметр;
- a, b — катеты треугольника (стороны, которые образуют прямой угол).
8. Как найти периметр прямоугольного треугольника, зная катет и гипотенузу
Посчитайте квадраты гипотенузы и катета.
Отнимите от первого числа второе.
Найдите корень из результата.
Прибавьте катет и гипотенузу.
Иллюстрация: Лайфхакер
- P — искомый периметр;
- a — любой катет прямоугольника;
- c — гипотенуза (сторона, которая лежит напротив прямого угла).
Периметр геометрической фигуры — суммарная длина границ плоской геометрической фигуры. Периметр
имеет ту же размерность величин, что и длина.
Треугольник — это многоугольник с тремя сторонами. Стороны треугольника обозначаются малыми
буквами, соответствующими обозначению противоположных вершин.
Периметр треугольника равен сумме длин его сторон, общая формула:
где a,b,c — длины сторон треугольника
Формула периметра треугольника для треугольника АВС:
Периметр равностороннего треугольника.
Чтобы найти периметр равностороннего треугольника (или найти периметр правильного
треугольника), нужно знать его сторону.
В общем случае для нахождения периметра треугольника используют формулу:
Поскольку в равностороннем треугольнике все три стороны равны, формула упрощается:
Таким образом, периметр равностороннего треугольника находится по такой формуле: где а — длина его стороны. Периметр равнобедренного треугольника. Чтобы найти периметр равнобедренного треугольника, нужно знать всего две его стороны — основание и боковую сторону. Поскольку у равнобедренного треугольника две стороны равны (боковые), найти периметр равнобедренного треугольника можно по такой формуле: То есть, периметр равнобедренного треугольника равен сумме длин основания и Периметр произвольного треугольника ABC (рис. 1), длины сторон которого соответственно равны AB = c , BC = a , AC = b равен сумме его сторон a + b + c Периметр произвольного треугольника вычисляется по формуле: где a,b,c – стороны произвольного треугольника. Основные понятия, справедливые для треугольников
Если материал понравился Вам и оказался для Вас полезным, поделитесь им со своими друзьями!
О сайтеНа нашем сайте вы найдете множество полезных калькуляторов, конвертеров, таблиц, а также справочных материалов по основным дисциплинам. Самый простой способ сделать расчеты в сети — это использовать подходящие онлайн инструменты. Воспользуйтесь поиском, чтобы найти подходящий инструмент на нашем сайте. calcsbox.comНа сайте используется технология LaTeX.
© 2021 Все калькуляторы online Копирование материалов запрещено |