Как найти площадь многоугольника

Онлайн калькулятор — площадь правильного многоугольника

Каким способом посчитать площадь многоугольника:

Через тангенс Через радиус вписанной окружности

Решение

Теория

Правильный многоугольник — это выпуклый многоугольник, у которого все стороны между собой равны и все углы между смежными сторонами равны.

Правильный многоугольник так же называют правильным n-угольником, где n — это количество сторон в многоугольнике (пятиугольник, шестиугольник и т.д.).

В любой правильный многоугольник можно вписать окружность. Такая окружность называется вписанной окружностью.

Около любого правильного многоугольника можно описать окружность.

Центры вписанной в правильный многоугольник окружности и описанной около правильного многоугольника окружности совпадают. Эту точку называют центром правильного многоугольника.

Формулы площади правильного многоугольника

  • S — площадь правильного многоугольника
  • n — количество сторон
  • a — длина стороны
  • tg — тангенс

Площадь правильного многоугольника через радиус вписанной окружности

  • S — площадь правильного многоугольника
  • p — полупериметр правильного многоугольника
  • r — радиус вписанной окружности правильного многоугольника
  • n — количество сторон
  • a — сторона правильного многоугольника
  • Площадь квадрата
  • Площадь кольца
  • Площадь круга
  • Площадь неравнобедренной трапеции
  • Площадь параллелограмма
  • Площадь полной поверхности куба
  • Площадь правильного многоугольника
  • Площадь прямоугольника
  • Площадь прямоугольного треугольника
  • Площадь прямоугольной трапеции
  • Площадь равнобедренного треугольника
  • Площадь равнобедренной трапеции
  • Площадь равностороннего треугольника
  • Площадь ромба
  • Площадь сферы
  • Площадь треугольника
  • Площадь эллипса
Геометрия
  • Площади фигур
  • Объёмы фигур
  • Размеры фигур
Конвертеры
  • Конвертер длины
  • Конвертер площади
  • Градусы-радианы
Счётчики
  • Счётчик символов в тексте
  • Разрешение экрана
kalk.top — Онлайн калькуляторы

Сайт онлайн калькуляторов, конвертеров и счётчиков.
Делайте свои расчёты вместе с нами!

Для дошкольников и учеников 1-11 классов

Рекордно низкий оргвзнос 25 Р.

Описание презентации по отдельным слайдам:

Понятие площади многоугольника. МБОУ СОШ пос. Тейсин Учитель Горбач Т.В. 1 категория

Цели урока: Дать представление об измерении площадей многоугольника; Рассмотреть основные свойства площадей; Познакомиться с формулой Пика; Показать учащимся примеры использования изученного материала в ходе решения задач.

По горизонтали: 1.Четырехугольник, у которого противоположные стороны параллельны. 2.Четырехугольник, у которого только две противоположные стороны параллельны. 3.Параллелограмм, у которого все углы прямые. 4.Точка, из которой выходят стороны четырехугольников. По вертикали: 1. Сумма длин всех сторон. 5. Отрезок, соединяющий противоположные вершины четырехугольника. 6. Прямоугольник, у которого все стороны равны. 7. Параллелограмм, у которого все стороны равны. 8.Отрезок, соединяющий соседние вершины

При выбранной единице измерения площадей площадь каждого многоугольника показывает сколько раз единица измерения и ее части укладываются в данном многоугольнике

Основные Единицы измерения площадей квадратный метр – м2 квадратный дециметр – дм2 квадратный сантиметр – см2 квадратный миллиметр- мм2 квадратный километр – км2 ар (сотка)-100 м2 га (гектар)- 10000 м2

Русские устаревшие Квадратная верста = 1,13806 км² Десятина = 10925,4 м² Копна = 0,1 десятины — сенные покосы мерили копнами Квадратная сажень = 4,55224 м²

Античные Актус Арура Центурия Югер

Исторический очерк(Википедия) Многие годы площадь считалась первичным понятием, не требующим определения. Основной задачей математиков являлось вычисление площади, при этом были известны основные свойства площади[. В Древнем Египте использовались точные правила вычисления площади прямоугольников, прямоугольных треугольников и трапеций, площадь произвольного четырёхугольника определялась приближённо как произведение полусумм пар противоположных сторон. Применение такой приближённой формулы связано с тем, что участки, площадь которых надо было померить, были в основном близки к прямоугольным и погрешность в таком случае оставалась небольшой. Историк математики А. П. Юшкевич предполагает, что египтяне могли и не знать, что пользуются приближённой формулой.]. Основным приёмом вычисления площади при этом являлось построение квадрата, площадь которого равна площади заданной многоугольной фигуры, в частности в книге I «Начал» Евклида, которая посвящена планиметрии прямолинейных фигур, доказывается, что треугольник равновелик половине прямоугольника, имеющего с ним равные основания и высоту[9]. Метод разложения, основанный на том, что две равносоставленные фигуры равновелики, позволял также вычислить площади параллелограммов и любых многоугольников.

Свойство 1.Равные многоугольники имеют равные площади Равновеликие

Свойство 2. Если многоугольник составлен из нескольких многоугольников, то его площадь равна сумме площадей его частей S = S1 + S2 + S3 S1 S2 S3

Свойство 3. Площадь квадрата равна квадрату его стороны S = a2

Решить задачу по готовому чертежу. .

Как найти площадь данного четырехугольника?

Формула Пика S = B + 0,5 Г – 1, S – площадь многоугольника, выраженная в площадях единичных квадратиков сетки; Г – количество узлов сетки, лежащих на границах многоугольника, В – количество узлов сетки, лежащих внутри многоугольника. В нашем случае Г=8, В=7, S=7+4 -1 = 10.

Проверочная работа 1.Сформулируйте три свойства площадей. 2.Как найти площадь квадрата? 3.Чему равна сторона квадрата , площадь которого равна 625см 2 4.Чему равна площадь квадрата со стороной 12 см. 5.Как называются фигуры, которые имеют одинаковые площади.

Домашнее задание П.48.49 № 448,449 *Составить 5 заданий по данной теме (задачи, интересные вопросы, кроссворд, задачи на готовых чертежах)

Одна из прикладных задач, которые решает геометрия — вычисление площадей многоугольников. Это необходимо строителям, земледельцам, конструкторам, летчикам, геологам. Даже в повседневной жизни знание формул, показывающих, как узнать площадь многоугольника, часто выручает при ремонте квартиры или дома.

Сначала определимся, что такое многоугольник, и что такое площадь. В геометрии многоугольником называют фигуру на плоскости, образованную замкнутой ломаной линией с количеством звеньев более 2-х. Это все известные и неизвестные нам фигуры, начиная от треугольника — квадрат, трапеция, ромб, шестиугольник, восьмиугольник и т.д. Готовые формулы, как найти площадь многоугольника созданы практически для каждой правильной фигуры с конечным количеством сторон. А вот что делать с неправильными?

Площади самых распространенных многоугольников можно найти по готовым формулам:

площадь многоугольника формула

Правильным многоугольником называется фигура, у которой все стороны равны, а смежные углы одинаковые. Площадь — часть плоскости, в которой лежит фигура, заключенная между ее сторонами. Если многоугольник нарисован в тетради в клеточку, то площадь — это количество квадратиков внутри фигуры. За единицу площади принят квадратный метр (м 2 ), или квадратный сантиметр (см 2 ), в зависимости от размеров многоугольника.

  • Квадратный метр — площадь квадрата со сторонами длиной в 1 м;
  • Квадратный сантиметр — площадь квадрата со стороной 1 см.
  • В одном м 2 помещается 10000 см 2 ;
  • 1 см 2 = 1 ∙ 10 -4 см.

Площадь многоугольника не обязательно равна целому числу квадратных единиц. Если у вас получится площадь, например, 22, 3 см 2 , расстраиваться не нужно. Есть еще квадратные миллиметры и более мелкие единицы.

Чтобы не запоминать десятки готовых формул, можно выучить только одну — как найти площадь многоугольника через периметр. Способ этот простой и не требует большого объема вычислений. Для работы нужны только линейка и карандаш.

Цели:

  • обучающие: научить учащихся находить площадь многоугольника, используя выбранные ими способы, сформировать начальные представления
  • многоугольнике, графические и измерительные навыки;
  • развивающие: развитие способов умственной деятельности учащихся при выполнении заданий от наблюдения, расчетов до выяснения закономерностей вычисления площади многоугольника;
  • воспитывающие: раскрытие субъективного опыта учащихся, поощрение действий, стремлений учащихся как основы воспитания положительных качеств личности;
  • методическая: создание условий для проявления познавательной активности учащихся.

Оснащение урока:

  1. Оформление доски: слева — фигуры многоугольника, справа — чистое полотно доски для записи на уроке, в центре – многоугольник-прямоугольник.
  2. Листок “К исследованию”.
  3. Инструментарии учителя и учащихся (мел, указка, линейка, листок исследования, фигуры, ватман, маркер).

Метод урока:

  • По взаимодействию учителя и учащихся – диалог-общение;
  • По способу решения задач – частично-поисковый;
  • По способу умственной деятельности — (СУД) развивающее обучение.

Форма урока — фронтальная, в парах, индивидуальная.

Тип урока — урок усвоения новых знаний, умений и навыков.

Структура урока — постепенное углубление в тему, гибкая, диалогическая.

Ход урока

Урок прекрасен и приносит радость, когда мы мыслим, дружно работаем. Сегодня мы будем рассматривать фигуры, определять их названия, думать, искать и находить решения. Пожелаем друг другу успешной работы.

Рассмотрите фигуры (на доске многоугольники).

Они все вместе. Почему? Какой у них общий признак? (Многоугольники).

Назовите этот многоугольник (5-угольник, 6-угольник…)

Может быть, вы знаете, что такое площадь многоугольника?

Тогда покажите на одной из фигур.

(Обобщение учителем: площадь — часть плоскости внутри замкнутой геометрической фигуры.)

В русском языке это слово имеет несколько значений.

(Ученик по словарю знакомит со значениями.)

  1. Часть плоскости внутри замкнутой геометрической фигуры.
  2. Большое незастроенное и ровное место.
  3. Помещение для какой-либо цели.

Какое из значений используется в математике?

В математике используется первое значение.

(На доске фигура).

Это многоугольник? Да.

Назовите фигуру по-другому. Прямоугольник.

Покажи длину, ширину.

Как найти площадь многоугольника?

Запишите при помощи букв и знаков формулу.

Если длина нашего прямоугольника 20 см, ширина 10см. Чему равна площадь?

Площадь равна 200 см 2

Подумайте, как приложить линейку, чтобы фигура разделилась на:

  1. Два треугольника
  2. Два четырехугольника
  3. Треугольник и четырехугольник
  4. Треугольник и пятиугольник

Увидели, из каких частей состоит фигура? А теперь, наоборот, по частям соберем целое.

( Части фигуры лежат на партах. Дети собирают из них прямоугольник ).

Сделайте вывод по наблюдениям.

Целую фигуру можно разделить на части и из частей составить целую.

Дома на основе треугольников и четырехугольников составляли фигуры, силуэты. Вот какие они получились.

(Демонстрация рисунков, выполненных дома учащимися. Одна из работ анализируется).

Какие фигуры использовал? У тебя получился сложный многоугольник.

Постановка учебной задачи.

На уроке мы должны ответить на вопрос: как найти площадь сложного многоугольника?

Для чего человеку нужно находить площадь?

(Ответы детей и обобщение учителем).

Задача определения площади возникла из практики.

(Показывается план школьного участка).

Для того чтобы построить школу, сначала создали план. Потом разбивалась территория на участки определенной площади, размещались строения, клумбы, стадион. При этом участок имеет определенную форму — форму многоугольника.

Решение учебной задачи.

(Раздаются листы для исследования).

Перед вами фигура. Назовите ее.

Найдем площадь многоугольника. Что для этого надо делать?

Разделить на прямоугольники.

(При затруднении будет другой вопрос: “Из каких фигур состоит многоугольник?”).

Из двух прямоугольников.

С помощью линейки и карандаша разделите фигуру на прямоугольники. Обозначьте цифрами 1 и 2 полученные части.

Найдем площадь первой фигуры.

(Учащиеся предлагают следующие варианты решений и записывают их на доске).

1способ:

  • S1 = 5 ? 2 = 10 см 2
  • S2 = 5 ? 1 = 5 см 2

Зная площадь частей, как найти площадь целой фигуры?

S = 10 + 5 = 15 см 2

2 способ:

  • S1 = 6 ? 2 = 12 см 2
  • S2 = 3 ? 1 = 3 см 2
  • S = 12 + 3 = 15 см 2 .

Сравните результаты и сделайте вывод.

Проследим наши действия

Как находили площадь многоугольника?

Составляется и записывается на плакате алгоритм:?

1. Делим фигуру на части

2. Находим площади частей этих многоугольников ( S1, S2 ).

3. Находим площадь целого многоугольника ( S1 + S 2 ).

( Несколько учащихся проговаривают алгоритм).

Мы нашли два способа, а может, есть еще?

А можно фигуру достроить.

Сколько прямоугольников получилось?

Обозначим части 1 и 2. Проведем измерения.

Найдите площадь каждой части многоугольника.

  • S1=6? 5=30см 2
  • S2= 5 ? 3 = 15 см 2

Как найти площадь нашего шестиугольника?

S = 30 – 15 = 15 см 2

Достроили фигуру до прямоугольника

Сравните два алгоритма. Сделайте вывод. Какие действия одинаковые? Где разошлись наши действия?

Закройте глазки, опустите головки. Мысленно повторите алгоритм.

Мы провели исследовательскую работу, рассмотрели разные способы и теперь можем находить площадь любого многоугольника.

Перед вами многоугольники.

Найти площадь одной фигуры по выбору, при этом можете пользоваться разными способами.

Работа выполняется самостоятельно. Дети выбирают фигуру. Находят площадь одним из способов. Проверка – ключ на доске.

Что можно сказать о форме? ( Форма разная)

А какова площадь этих многоугольников? ( Площади этих многоугольников равны)

У кого правильно – поставь “+”.

У кого сомнения, затруднения – “?”

Консультанты оказывают помощь ребятам, ищут ошибки, помогают исправить.

Составить свои листки исследования, вычислить площадь многоугольника разными способами.

Итак, ребята, что вы расскажите родителям, о том как найти площадь геометрической фигуры – многоугольника.

Площадь многоугольника — это величина той части плоскости, которую занимает многоугольник.

За единицу измерения площадей принимают квадрат, сторона которого равна единице измерения отрезков.

единица измерения отрезков единица измерения площадей название квадрата
мм мм 2 квадратный миллиметр
см см 2 квадратный сантиметр
дм дм 2 квадратный дециметр
м м 2 квадратный метр
км км 2 квадратный километр

При выбранной единице измерения площадей площадь каждого многоугольника выражается положительным числом. Это число показывает, сколько раз единица измерения и ее части укладываются в данном многоугольнике.

Свойства площадей

1 0 . Равные многоугольники имеют равные площади.
2 0 . Если многоугольник составлен из нескольких многоугольников, то его площадь равна сумме площадей этих многоугольников (Рис.1).

Свойства 1 0 и 2 0 называют основными свойствами площадей.

3 0 . Площадь квадрата равна квадрату его стороны (Рис.2).

Равновеликие многоугольники — это многоугольники, которые имеют равные площади.

Равносоставленные многоугольники — это многоугольники, которые составлены из многоугольников, имеющих равные площади. На рисунке 3 изображены два равносоставленных многоугольника.

Любые два равносоставленных многоугольника равновеликие.

Верно и обратное утверждение: если два многоугольника равновеликие, то они равносоставленные (теорема Бойяи — Гервина).

Поделись с друзьями в социальных сетях:

Многоугольник или полигон — геометрическая фигура, которая имеет n-ное количество углов. В общем случае многоугольник — это часть плоскости, которая ограничена замкнутой ломанной.

Геометрия многоугольников

В целом такая геометрическая фигура может иметь абсолютно любой вид. К примеру, символы звезды и компаса, полигон для моделирования или грань шестеренки — многоугольники. Многоугольные фигуры разделяются на две группы:

  • невыпуклые, которые имеют любую причудливую форму с возможными самопересечениями (самый очевидный пример — звезда);
  • выпуклые, все точки которых находятся по одну сторону от прямой, проведенной через две соседние вершины (квадрат, треугольник).

Выпуклый полигон, у которого все углы равны и все стороны равны, считается правильным и имеет собственное название. К примеру, правильный пятиугольник называется пентагон, шести — гексагон, восьмиугольник — октагон, десятиугольник — декагон, одиннадцатиугольник — гендекагон, двенадцати — додекагон. Любой правильный многоугольник имеет свою вписанную и описанную окружность. При этом круг также можно представить как правильный полигон, который имеет бесконечное количество углов.

Многоугольники в реальности

Невыпуклые многоугольники практически не распространены в реальной жизни: они довольно редко встречаются в природе, а в рукотворном виде она выступают в роли граней деталей машин. Многие морские организмы обладают пентасимметрией, и наиболее очевидным примером невыпуклой фигуры является морская звезда.

Правильные геометрические фигуры наоборот широко встречаются в природе. Наиболее очевидным примером являются пчелиные соты, каждая ячейка которых представляет собой гексагон. Такие гексагональные ячейки позволяют маленьким труженицам наиболее экономно использовать площадь улья, заполняя пространство без просветов. Кроме того, многие простейшие организмы, например радиолярии, имеют форму правильных полигонов.

Площадь многоугольника

Площадь геометрической фигуры — это характеристика плоского объекта, которая показывает его размер. Площадь невыпуклых многоугольников находится путем разбиения фигуры на более мелкие составляющие, обычно треугольники или квадраты. Наш онлайн-калькулятор позволяет вычислять площадь только правильных многоугольников, которая определяется общей формулой:

S = n/4 × a 2 × ctg(pi/n),

где n — количество сторон фигуры, a — длина стороны.

Подставляя вместо n количество сторон фигуры можно получить формулу для определения площади любого правильного полигона, которая будет представлять собой площадь квадрата a 2 , умноженного на определенный коэффициент. Интересно, что при увеличении количества углов этот коэффициент также будет увеличиваться, к примеру, для пентагона — 1,72, а гексагона — 2,59.

Так как около любого правильного полигона можно описать окружность или вписать ее в него, мы можем использовать соответствующие радиусы для вычисления площадей многоугольников. Сторона и радиус описанной окружности для любого полигона соотносятся как:

a = R × 2 sin (pi/n),

где R – радиус описанной окружности, n – количество сторон геометрической фигуры.

Для вписанной в полигон окружности соотношение немного изменяется и выглядит как:

где r – радиус вписанной окружности.

Таким образом, для определения площади любого правильного полигона вам понадобится указать количество сторон n и любой параметр на выбор:

  • длина стороны a;
  • радиус вписанной окружности r;
  • радиус описанной окружности R.

Рассмотрим пару примеров для нахождения площади любого многоугольника.

Примеры из жизни

Пчелиные соты

Пчелиные соты — уникальный природный объект, который состоит из множества гексагональных призматических ячеек. Давайте подсчитаем, сколько таких шестиугольников находится в одних сотах. Для этого нам нужно узнать общую площадь и площадь одной ячейки. Из Википедии мы знаем, что стандартная рамка для сот имеет размеры 435 х 300 мм, соответственно, общая площадь составляет 130 500 квадратных миллиметров. Там же указано, что горизонтальный диаметр одной ячейки составляет примерно 5,5 мм. Горизонтальный диаметр полигона — это диаметр вписанной в него окружности, следовательно, мы знаем параметр r = 2,75 мм. Таким образом, при n = 6 площадь одной ячейки составляет:

Теперь мы можем узнать общее количество ячеек в одних сотах, которое выражается как 130500/26,19 = 4982

Снежинка

Снежинки имеют форму правильного треугольника или шестиугольника благодаря тому факту, что вода состоит из трех атомов и при переходе из одного агрегатного состояния в другое, молекулы воды соединяются с другими частицами и образуют треугольник или гексагон. Равносторонний треугольник — это такой же правильный полигон, как и другие, ведь он имеет три равных стороны и три равных угла. Соответственно, мы можем определить площадь такой снежинки, зная только длину стороны. Пусть сторона снежинки равна 8 условным единицам. Тогда для определения площади нам потребуется указать n = 3 и a = 8. Мы получим результат в виде:

Кроме площади абстрактной снежинки, наш калькулятор посчитал также радиусы вписанной и описанной окружности.

Заключение

Правильный полигон — это не только экзотический додекагон, но и квадрат или равносторонний треугольник, а значит, такую фигуру вы обязательно встретите не только в школьных задачах, но и в быту, на работе и в реальной повседневности. Используйте наш калькулятор для определения площадей любых правильных многоугольников.

На странице собраны калькуляторы и формулы, которые помогут найти и рассчитать площадь правильного многоугольника по стороне и количеству сторон, а также зная радиус вписанной и описанной окружностей.

Правильный многоугольник — это выпуклый многоугольник, у которого все стороны между собой равны и все углы между смежными сторонами равны.

Через сторону

Формула для нахождения площади правильного многоугольника через сторону:

<4cdot tg (frac<180degree>)>> , где a — сторона многоугольника, n — число сторон многоугольника.

Через радиус вписанной окружности

Формула для нахождения площади правильного многоугольника через радиус вписанной окружности:

)> , где r — радиус вписанной окружности, n — число сторон многоугольника.

Через радиус описанной окружности

Формула для нахождения площади правильного многоугольника через радиус описанной окружности:

<2>cdot R^2 cdot n cdot sin (frac<360degree>)> , где R — радиус описанной окружности, n — число сторон многоугольника.