Как решать логарифмы

Предыдущую статью о показательных уравнениях мы начали с уравнения 2 x = 8. Там всё было ясно: x = 3.

А теперь рассмотрим уравнение 2 x = 7.

По графику функции y = 2 x мы видим, что это уравнение имеет корень, и притом единственный.


Ясно, что этот корень — не целое число (так как 2 2 = 4, 2 3 = 8). Более того, оказывается, что он не является даже рациональным числом, т. е. не представляется в виде обыкновенной дроби. Интуитивно мы чувствуем лишь, что он меньше 3, но не намного.

Этот корень обозначается log27 (читается: «логарифм семи по основанию два». Он является иррациональным числом, т. е. бесконечной непериодической десятичной дробью. Калькулятор даёт: log27 = 2,807354922057604107.

Итак, наше число log27 — это показатель степени, в которую надо возвести 2, чтобы получить 7.

Теперь дадим общее определение логарифма. Пусть a > 0 и a ≠ 1 (условия те же, что и для основания показательной функции).

Определение. Логарифм положительного числа b по основанию a (обозначается logab) — это показатель степени, в которую надо возвести a, чтобы получить b.

так как

, так как

так как ;

, так как .

Логарифм с основанием 10 называется десятичным и обозначается lg. Например, lg 100 = 2, lg 1000 = 3, lg 0,01 = −2.

Логарифм с основанием e называется натуральным и обозначается ln.

Обратите внимание: логарифм определён только для положительных чисел. Причина заключается в том, что показательная функция может принимать лишь положительные значения. Например, число log2(−4) не существует: в какую бы степень мы ни возводили 2, мы никогда не получим −4.

Не забывайте также про ограничения на основание логарифма: 0 1.

Основные формулы

По определению, logab — это показатель степени, в которую надо возвести число a, чтобы получить число b:

a logab =b

(1)

Формула (1) называется основным логарифмическим тождеством.
Вот еще один вариант записи основного логарифмического тождества:

Перечислим свойства логарифмов. Они являются простыми следствиями правил действия со степенями. Все логарифмы ниже считаются определёнными.

Логарифм произведения — это сумма логарифмов:

loga(bc) = logab + logac.

(2)

Логарифм частного — это разность логарифмов:

Показатель степени логарифмируемого числа «спрыгивает» перед логарифмом:

Показатель степени основания логарифма тоже «спрыгивает», но в виде обратного числа:

Формулы (4) и (5) вместе дают:

(6)

В частности, если m = n, мы получаем формулу:

(7)

Например, .

Наконец, важнейшая формула перехода к новому основанию:

(8)

В частности, если c = b, то logbb = 1, и тогда:

(9)

Приведём несколько примеров из банка заданий.
1. (применили формулу (2) суммы логарифмов).

2. (применили основное логарифмическое тождество(1))

3. (применили формулу (4).

4. (применили формулу (9), перейдя к новому основанию 0,8).

5. (применили формулу (3) разности логарифмов)

Немного истории

Теперь вы поняли, что такое логарифмы и как ими пользоваться. Но для чего они всё-таки нужны? Или это просто такая математическая игрушка с хитрой инструкцией по применению?

Понятие логарифма и логарифмические таблицы появились в 17 веке, и значение их было огромно.

Это в наши дни вычисления не представляют труда — у каждого есть калькулятор. А как считали в «докомпьютерные» времена?

Складывать и вычитать можно было на счётах, а вот умножать и делить приходилось «в столбик» — медленно и трудно.

В 15–17 веках, в эпоху великих географических открытий, стали бурно развиваться торговля, экономика и наука. Требования к математике росли: расчёты становились более сложными, а точность — например, для решения навигационных задач — нужна была всё более высокая.

Необходим был инструмент, позволяющий упростить и ускорить расчёты, и таким инструментом явились логарифмы.

Предположим, что b и c — большие числа, которые надо перемножить. Появление таблиц логарифмов (например, с основанием 10) существенно упростило эту задачу. Теперь вычислителю достаточно было найти по таблицам десятичные логарифмы чисел b и c, сложить их (на счётах) и получить логарифм произведения: lgb + lgc = lg(bc).

А затем по таблице логарифмов найти само произведение чисел b и c.

Недаром французский математик и астроном Лаплас сказал, что изобретение логарифмов удлинило жизнь вычислителей. Логарифмическая линейка (которой инженеры пользовались до 70-х годов двадцатого века) была не менее прогрессивным изобретением, чем современный калькулятор.

Но это еще не всё! Мы не занимались бы логарифмами, если бы они имели лишь историческую, «музейную» ценность. О неожиданных применениях логарифмов мы расскажем в следующей статье, посвящённой логарифмической функции.

Сегодня мы поговорим о формулах логарифмов и дадим показательные примеры решения.

Ранее мы уже познакомились с понятием логарифма. А также рассмотрели основные свойства и примеры решения.

Формулы логарифмов сами по себе подразумевают шаблоны решения согласно основным свойствам логарифмов. Прежде применять формулы логарифмов для решения напомним для вас, сначала все свойства:

Теперь на основе этих формул(свойств), покажем примеры решения логарифмов.

Примеры решения логарифмов на основании формул.

Логарифм положительного числа b по основанию a (обозначается logab) — это показатель степени, в которую надо возвести a, чтобы получить b, при этом b > 0, a > 0, а 1.

Согласно определения logab = x, что равносильно a x = b, поэтому logaa x = x.

log28 = 3, т.к. 2 3 = 8

log749 = 2, т.к. 7 2 = 49

log51/5 = -1, т.к. 5 -1 = 1/5

Десятичный логарифм — это обычный логарифм, в основании которого находится 10. Обозначается как lg.

log10100 = 2, т.к. 10 2 = 100

Натуральный логарифм — также обычный логарифм логарифм, но уже с основанием е (е = 2,71828. — иррациональное число). Обозначается как ln.

Формулы или свойства логарифмов желательно запомнить, потому что они понадобятся нам в дальнейшем при решении логарифмов, логарифмических уравнений и неравенств. Давайте еще раз отработаем каждую формулу на примерах.

    Основное логарифмическое тождество
    a logab = b

8 2log83 = (8 2log83 ) 2 = 3 2 = 9
Логарифм произведения равен сумме логарифмов
loga (bc) = logab + logac

log38,1 + log310 = log3 (8,1*10) = log381 = 4
Логарифм частного равен разности логарифмов
loga (b/c) = logab — logac

9 log550 /9 log52 = 9 log550- log52 = 9 log525 = 9 2 = 81
Свойства степени логарифмируемого числа и основания логарифма

Показатель степени логарифмируемого числа logab m = mlogab

Показатель степени основания логарифма loga n b =1/n*logab

если m = n, получим loga n b n = logab

log49 = log2 2 3 2 = log23
Переход к новому основанию
logab = logcb/logca,

если c = b, получим logbb = 1

Как видите, формулы логарифмов не так сложны как кажутся. Теперь рассмотрев примеры решения логарифмов мы можем переходить к логарифмическим уравнениям. Примеры решения логарифмических уравнений мы более подробно рассмотрим в статье: «Решение логарифмических уравнений. Как решать, на примерах». Не пропустите!

Если у вас остались вопросы по решению, пишите их в комментариях к статье.

Заметка: решили получить образование другого класса обучение за рубежом как вариант развития событий.

Если материал был полезен, вы можете отправить донат или поделиться данным материалом в социальных сетях:

Определение логарифма

Логарифм — это математическая функция, основанная на свойствах возведения в степень.

Значение логарифма соответствует показателю степени данной базы, равному положительному числу “b” в базе “a”, что также должна быть положительной и отличаться от 1.

Чтобы лучше понять концепцию логарифма, необходимо посмотреть на формулу логарифмического уравнения:

“a” = основание, которое должно быть больше нуля (a > 0) и отличаться от единицы (a ≠ 1).

“b” = логарифмируемое число, где b должно быть больше нуля (b > 0).

В этом уравнении мы хотим найти, в какую степень (х) нужно возвести a, чтобы получилось b, т. е. aˣ = b.

, потому что

Формулы и свойства логарифмов

Некоторые из основных правил логарифма:

    Когда логарифмируемое число равно основанию логарифма, логарифм всегда будет равен 1 ;

Логарифм с любым основанием, число которого равно 1, всегда будет иметь результат равным 0 ;

Два логарифма с одинаковым основанием всегда будут иметь одинаковые числа ;

Если основание «а» возведено в степень логарифма с основанием «а» числа «b», то он равен «b» ;

В случае умножения чисел мы можем превратить их в сумму двух логарифмов с одинаковыми основаниями ;

А в случае деления чисел мы превращаем их в вычитание двух логарифмов с одинаковыми основаниями ;

Правило возведения в степень: логарифм в степени упрощается путём умножения степени на логарифм, сохраняя её основание и число (тоже самое делается с логарифмом в квадрате)

Формулы перехода к новому основанию:

Решение логарифмов — примеры

Пример 1

Пример 2

ОДЗ логарифма

Как определить Область Допустимых Значений логарифма:

Для определения ОДЗ логарифма мы обращаем внимание только на то, что стоит в скобках, и указываем, что вся эта часть больше ноля.

График логарифмической функции

Примерно таким образом может выглядеть график логарифмической функции (одна из линий на рисунке):

Свойства логарифмической функции :

  • E (y) = R, множество значений — все действительные числа;
  • область определения — множество всех положительных чисел D(y): (0;+∞);
  • её график всегда проходит через точку (1;0);
  • она не считается ни чётной, ни нечётной;
  • у неё нет ни наибольшего, ни наименьшего значений;
  • она не ограничена ни сверху, ни снизу;
  • если 0 функция убывает, а если a>1 => функция возрастает.

Логарифм Непера или натуральный логарифм

Состоит из логарифма, основанного на иррациональном числе, которое называется «число Эйлера», пишется как «e» и приблизительно равно 2,718281. Является обратной функцией к экспоненциальной функции.

Название логарифма («логарифм Непера») произошло от имени его изобретателя — математика Джона Непера.

Десятичный логарифм

Это наиболее распространённая модель математических вычислений, особенно в так называемых логарифмических шкалах (или логарифмическом масштабе). Например: шкала pH, шкала Рихтера интенсивности землетрясений, шкала частоты звука — нотная шкала, и другие. И характеризуется тем, что основание (её логарифма) равно 10.

Десятичный логарифм может быть представлен без указания его основания.

История логарифма

Первоначально концепция логарифма была создана шотландским математиком Джоном Непером (1550–1617) в 17-м веке, с целью упрощения сложных тригонометрических расчётов.

Английский математик Генри Бриггс (1561–1630) также внёс свой вклад в исследования логарифма и считается одним из ответственных за улучшение десятичного логарифма и за создание его современной версии.

Этимологически слово «логарифм» образовано объединением двух греческих терминов: λόγος — «основание» и ἀριθμός — «число».

Логарифм данного числа — это показатель степени, в которую нужно возвести основание, чтобы получить данное число.

О равенстве a x = N можно сказать, что x — это логарифм числа N по основанию a (где a > 0 и a ≠ 1).

Слово логарифм сокращённо обозначается log, основание же, при котором указывается логарифм данного числа, обозначается в виде нижнего индекса с правой стороны log.

Если мы знаем, что логарифм числа N при основании a равен числу x, то есть:

то это равенство можно написать без знака логарифма

a x = N,

где a — основание степени, x — показатель степени, N — степень.

logaN = x и a x = N

выражают одну и ту же зависимость между числами a, x и N: если дано одно из равенств, значит можно написать и второе. Эту же зависимость между числами a, x и N можно выразить ещё одним равенством:

x √ N = a или a = x √ N .

Отрицательные числа и нуль ни при каком основании a (a > 0 и a ≠ 1) логарифмов не имеют.

Основное логарифмическое тождество

Степень, показателем которой является логарифм числа N при таком же основании, как и основание степени, равна числу N.

Возьмём логарифм числа N при основании a равный числу q

logaN = q, значит a q = N.

Подставив в последнее равенство вместо числа q равное ему выражение logaN, получим

Выражение a logaN = N называется основным логарифмическим тождеством.

Свойства логарифмов

Рассмотрены свойства логарифмов для оснований, которые больше нуля и не равны единице:

a > 0 и a ≠ 1.

Логарифм единицы равен нулю.

так как нулевая степень любого числа (за исключением нуля) равна 1:

Логарифм числа равного основанию равен единице.

так как первая степень любого числа равна этому же числу без степени:

a 1 = a.

Логарифм произведения равен сумме логарифмов сомножителей.

где M > 0, N > 0.

Логарифм частного равен разности логарифмов делимого и делителя (или логарифм дроби равен логарифму числителя минус логарифм знаменателя).

logaM

= logaMlogaN ,

N

где M > 0, N > 0.

Логарифм степени равен произведению показателя степени на логарифм основания этой степени.

Логарифм, у которого в основании стоит степень, равен частному от деления логарифма при этом же основании без степени на показатель степени основания.

где N > 0, x ≠ 0.

Логарифм корня равен частному от деления логарифма подкоренного числа на показатель корня.

loga x √ N = logaN

= 1

logaN .

x

x

Из формулы логарифма корня и формулы логарифма, у которого в основании стоит степень, можно сделать вывод, что логарифм корня равен логарифму данного числа с основанием в степени, равной показателю корня.

loga x √ N = loga x N = 1

logaN .

x

Свойства логарифмов степени и корня можно объединить ещё в одно:

loga β N α = α

logaN ,

β

где N > 0, β ≠ 0.

Любой логарифм можно представить в виде отношения двух логарифмов, взятых по одному и тому же произвольному основанию.

logbN = logaN

,

logab

где N > 0. Данная формула называется формулой перехода к новому основанию.

Произведение взаимно обратных логарифмов равно единице.

Взаимно обратные логарифмы — это пара логарифмов, у которых основание и выражение под знаком логарифма поменялись местами.

Величина логарифма не изменится, если возвести число, стоящее под знаком логарифма, и одновременно основание логарифма в какую-либо степень.

Свойства логарифма вытекают из его определения. И так логарифм числа b по основанию а определяется как показатель степени, в которую надо возвести число a, чтобы получить число b (логарифм существует только у положительных чисел).

Из данной формулировки следует, что вычисление x=logab, равнозначно решению уравнения a x =b. Например, log28 = 3 потому, что 8 = 2 3 . Формулировка логарифма дает возможность обосновать, что если b=a с , то логарифм числа b по основанию a равен с. Также ясно, что тема логарифмирования тесно взаимосвязана с темой степени числа.

С логарифмами, как и с любыми числами, можно выполнять операции сложения, вычитания и всячески трансформировать. Но ввиду того, что логарифмы — это не совсем ординарные числа, здесь применимы свои особенные правила, которые называются основными свойствами.

Сложение и вычитание логарифмов.

Возьмем два логарифма с одинаковыми основаниями: loga x и loga y. Тогда сними возможно выполнять операции сложения и вычитания:

Как видим, сумма логарифмов равняется логарифму произведения, а разность логарифмов — логарифму частного. Причем это верно если числа а, х и у положительны и а ≠ 1.

Важно обращать внимание, что основным аспектом в данных формулах выступают одни и те же основания. Если основания отличаются друг от друга, эти правила не применимы!

Правила сложения и вычитания логарифмов с одинаковыми основаниями читаются не только с лева на право, но и на оборот. В результате мы имеем теоремы логарифма произведения и логарифма частного.

Логарифм произведения двух положительных чисел равен сумме их логарифмов; перефразируя данную теорему получим следующее, если числа а, x и у положительны и а ≠ 1, то:

Логарифм частного двух положительных чисел равен разности логарифмов делимого и делителя. Говоря по другому, если числа а, х и у положительны и а ≠ 1, то:

Применим вышеизложенные теоремы для решения примеров:

Если числа x и у отрицательны, то формула логарифма произведения становится бессмысленной. Так, запрещено писать:

так как выражения log2(-8) и log2(-4) вообще не определены (логарифмическая функция у = log2х определена лишь для положительных значений аргументах).

Теорема произведения применима не только для двух, но и для неограниченного числа сомножителей. Это означает, что для всякого натурального k и любых положительных чисел x1, x2, . . . ,xn существует тождество:

Из теоремы логарифма частного можно получить еще одно свойство логарифма. Общеизвестно, что loga1= 0, следовательно,

А значит имеет место равенство:

Логарифмы двух взаимно обратных чисел по одному и тому же основанию будут различны друг от друга исключительно знаком. Так:

u0420u0435u0448u0435u043du0438u0435 u043bu043eu0433u0430u0440u0438u0444u043cu0430 u0437u0430u043au043bu044eu0447u0430u0435u0442u0441u044f u0432 u043eu043fu0440u0435u0434u0435u043bu0435u043du0438u0438 u0434u0430u043du043du043eu0439 u0441u0442u0435u043fu0435u043du0438 u043fu043e u0437u0430u0434u0430u043du043du044bu043c u0447u0438u0441u043bu0430u043c.
u0421u0443u0449u0435u0441u0442u0432u0443u044eu0442 u043fu0440u0430u0432u0438u043bu0430 u0438 u0444u043eu0440u043cu0443u043bu044b u0434u043bu044f u043fu0440u0435u043eu0431u0440u0430u0437u043eu0432u0430u043du0438u044f u0438 u0432u044bu0447u0438u0441u043bu0435u043du0438u044f u043bu043eu0433u0430u0440u0438u0444u043cu043eu0432.

u041fu0440u0435u0436u0434u0435 u0432u0441u0435u0433u043e u0434u043bu044f u043bu044eu0431u044bu0445 u043bu043eu0433u0430u0440u0438u0444u043cu043eu0432:
a>0, b>0, bu22601

u0424u043eu0440u043cu0443u043bu044b u0434u043bu044f u043fu0440u0435u043eu0431u0440u0430u0437u043eu0432u0430u043du0438u044f u043bu043eu0433u0430u0440u0438u0444u043cu043eu0432:

[tex]2. Log_a(bc)=log_ab+log_ac Log_50.1+log_5250=log_50.1*250=log_525=log_55^2=2[/tex]

[tex]3. log_a( frac )=log_ab-log_ac log_250-log_225=log_2( frac<50><25>)=log_22=1 [/tex]

[tex]4. log_ab^m=mlog_ab log_381=log_33^4=4*log_33=4[/tex]

Логарифм числа b (b > 0) по основанию a (a > 0, a ≠ 1) – показатель степени, в которую нужно возвести число a, чтобы получить b.

a x = b ⇔ logab = x

Логарифм числа b по основанию 10 можно записать как lg(b), а логарифм по основанию e (натуральный логарифм) – ln(b).

Основное логарифмическое тождество

Основное логарифмическое тождество часто используется при решении задач с логарифмами:

Свойства логарифмов

Существует четыре основных свойства логарифмов.

Пусть a > 0, a ≠ 1, x > 0 и y > 0.

Свойство 1. Логарифм произведения

Логарифм произведения равен сумме логарифмов:

Свойство 2. Логарифм частного

Логарифм частного равен разности логарифмов:

Свойство 3. Логарифм степени

Логарифм степени равен произведению степени на логарифм:

Если в степени находится основание логарифма, то действует другая формула:

Свойство 4. Логарифм корня

Данной свойство можно получить из свойства логарифм степени, так как корень n-ой степени равен степени 1/n:

Формула перехода от логарифма в одном основании к логарифму при другом основании

Данная формула также часто применяется при решении различных заданий на логарифмы:

Сравнение логарифмов (неравенства)

Пусть у нас есть 2 функции f(x) и g(x) под логарифмами с одинаковыми основаниями и между ними стоит знак неравенства:

Чтобы их сравнить, нужно сначала посмотреть на основание логарифмов a: