Как решить рациональное уравнение

  • Что такое рациональные уравнения: определение и виды
  • Основные приемы решения рациональных уравнений
  • Преобразования для упрощения формы уравнения
  • Примеры решения простейших рациональных уравнений

Что такое рациональные уравнения: определение и виды

Рациональным называют уравнение, обе части которого содержат рациональные выражения.

По-другому, алгебраическое рациональное уравнение представляет собой такое уравнение, левую часть которого записывают в виде рационального выражения, а правую с нулем.

Данные термины равнозначны. В подтверждении можно записать выражения P и Q с равносильными уравнениями P=Q и P−Q=0.

В рациональных уравнениях может быть разное число переменных от одного и более. Самыми простыми считаются математические выражения с одной переменной. В математике рассматривают два вида рациональных уравнений:

  • целые;
  • дробные.

Целое рациональное уравнение – это уравнение, обе части которого содержат целые рациональные выражения.

Дробное рациональное уравнение представляет собой запись, в которой одна или обе части содержат дробь.

В случае дробного рационального уравнения линейное выражение обязательно включает деление на переменную, либо переменную в знаменателе. Подобная запись не характерна для уравнений целого типа.

Основные приемы решения рациональных уравнений

Исходя из вида рационального уравнения, применяют определенный порядок действий для его решения. Когда требуется найти ответ к задаче с целым рациональным уравнением, следует воспользоваться универсальным методом:

  1. В первую очередь определяют минимальный общий знаменатель в рамках всего равенства.
  2. Второй шаг – расчет множителей, на которые перемножают все компоненты выражения.
  3. Далее требуется полученное равенство привести к общему знаменателю.
  4. По итогам манипуляций необходимо найти корни целого рационального уравнения.

Когда необходимо решить дробное рациональное уравнение, то следует воспользоваться аналогичным алгоритмом действий, но с небольшими дополнениями. Разница в способах заключается в том, что после четвертого шага, который состоит в поиске предполагаемых корней, при неравносильных преобразованиях необходимо выполнить проверку корней путем их подстановки в формулу.

Важно учитывать тот факт, что обладать нулевым значением может только числитель дроби. Корни, которые приводят знаменатель к нулевому значению, носят названия посторонних.

Встречаются дробные рациональные уравнения в достаточно сложной форме. Такие выражения необходимо упростить и решить путем частичной замены уравнения новой переменной.

Преобразования для упрощения формы уравнения

Решение рациональных уравнений достаточно просто найти, если воспользоваться некоторыми преобразованиями. Подобные манипуляции могут быть следующего типа:

  • равносильные или тождественные;
  • неравносильные.

Равносильными преобразованиями называют манипуляции, приводящие к выражению нового вида, содержащему корни первоначального.

Равносильные преобразования первоначального уравнения, не требующие проверок:

  • умножение или деление этого выражения на конкретное число, не равное нулю;
  • перенос компонентов равенства из правой части в левую и наоборот.

Неравносильные преобразования – действия с уравнением или системой, в результате которых образуются посторонние корни.

Неравносильными преобразованиями являются следующие манипуляции:

  • возведение в квадрат всех частей выражения;
  • исключение знаменателей, которые содержат переменную.

Если рациональное уравнение решено путем неравносильных преобразований, то полученные корни требуется проверить с помощью подстановки в первоначальное выражение. Это связано с вероятностью образования посторонних корней при неравносильных преобразованиях.

Пусть f ( x ) и g ( x ) – некоторые функции, зависящие от переменной x .

Дробно рациональное уравнение – это уравнение вида f ( x ) g ( x ) = 0 .

Для того, чтобы решить дробно рациональное уравнение, надо вспомнить, что такое ОДЗ и когда оно возникает.

ОДЗ – область допустимых значений переменной.

В выражении вида f ( x ) g ( x ) = 0

ОДЗ: g ( x ) ≠ 0 (знаменатель дроби не может быть равен нулю).

Алгоритм решения дробно рационального уравнения:

  1. Привести выражение к виду f ( x ) g ( x ) = 0 .
  2. Выписать ОДЗ: g ( x ) ≠ 0.
  3. Приравнять числитель дроби к нулю f ( x ) = 0 и найти корни.
  4. Указать в ответе корни из числителя, исключив те корни, которые попали в ОДЗ.

Пример решения дробного рационального уравнения:

Решить дробно рациональное уравнение x 2 − 4 2 − x = 1.

Решение:

Будем действовать в соответствии с алгоритмом.

  1. Привести выражение к виду f ( x ) g ( x ) = 0 .

Переносим единичку в левую часть, записываем к ней дополнительный множитель, чтобы привести оба слагаемых к одному общему знаменателю:

x 2 − 4 2 − x − 1 2 − x = 0

x 2 − 4 2 − x − 2 − x 2 − x = 0

x 2 − 4 − ( 2 − x ) 2 − x = 0

x 2 − 4 − 2 + x 2 − x = 0

x 2 + x − 6 2 − x = 0

Первый шаг алгоритма выполнен успешно.

Обводим в рамочку ОДЗ, не забываем про него: x ≠ 2

  1. Приравнять числитель дроби к нулю f ( x ) = 0 и найти корни:

x 2 + x − 6 = 0 – Квадратное уравнение. Решаем через дискриминант.

a = 1, b = 1, c = − 6

D = b 2 − 4 a c = 1 2 − 4 ⋅ 1 ⋅ ( − 6 ) = 1 + 24 = 25

D > 0 – будет два различных корня.

x 1,2 = − b ± D 2 a = − 1 ± 25 2 ⋅ 1 = − 1 ± 5 2 = [ − 1 + 5 2 = 4 2 = 2 − 1 − 5 2 = − 6 2 = − 3

  1. Указать в ответе корни из числителя, исключив те корни, которые попали в ОДЗ.

Корни, полученные на предыдущем шаге:

Значит, в ответ идет только один корень, x = − 3.

Задания для самостоятельного решения

№1. Решите уравнение: 3 x − 19 = 19 x − 3 .

Если корней несколько, запишите их через точку с запятой в порядке возрастания.

Решение:

3 x − 19 = 19 x − 3

[ x − 19 ≠ 0 x − 3 ≠ 0 ⇒ [ x ≠ 19 x ≠ 3

Приводим обе дроби к общему знаменателю, записываем дополнительные множители к числителям:

3 ( x − 3 ) x − 19 − 19 ( x − 19 ) x − 3 = 0

3 ( x − 3 ) − 19 ( x − 19 ) ( x − 19 ) ( x − 3 ) = 0

В соответствии с алгоритмом, приравниваем числитель к нулю:

3 x − 9 − 19 x + 361 = 0

x = − 352 − 16 = − 352 16 = 22

Полученный корень не входит в ОДЗ, так что смело можем его включать в ответ.

№2. Решите уравнение x − 4 x − 6 = 2.

Решение:

Можно решать эту задачу способом, который использовался при решении задачи №8. Но сейчас мы используем еще один способ решения таких уравнений.

Представим число 2 в виде дроби со знаменателем 1 .

Воспользуемся основным свойством пропорции :

произведение крайних членов равно произведению средних (правило «креста»):

a b = c d ⇒ a ⋅ d = b ⋅ c

x − 4 x − 6 = 2 1 ⇒ ( x − 4 ) ⋅ 1 = ( x − 6 ) ⋅ 2

Полученный корень не входит в ОДЗ, так что смело можем его включать в ответ.

Разделы: Математика

Класс: 8

Цели урока:

  • формирование понятия дробных рационального уравнения;
  • рассмотреть различные способы решения дробных рациональных уравнений;
  • рассмотреть алгоритм решения дробных рациональных уравнений, включающий условие равенства дроби нулю;
  • обучить решению дробных рациональных уравнений по алгоритму;
  • проверка уровня усвоения темы путем проведения тестовой работы.
  • развитие умения правильно оперировать полученными знаниями, логически мыслить;
  • развитие интеллектуальных умений и мыслительных операций — анализ, синтез, сравнение и обобщение;
  • развитие инициативы, умения принимать решения, не останавливаться на достигнутом;
  • развитие критического мышления;
  • развитие навыков исследовательской работы.
  • воспитание познавательного интереса к предмету;
  • воспитание самостоятельности при решении учебных задач;
  • воспитание воли и упорства для достижения конечных результатов.

Тип урока: урок – объяснение нового материала.

Ход урока

1. Организационный момент.

Здравствуйте, ребята! На доске написаны уравнения посмотрите на них внимательно. Все ли из этих уравнений вы сможете решить? Какие нет и почему?

Уравнения, в которых левая и правя часть, являются дробно-рациональными выражениями, называются дробные рациональные уравнения. Как вы думаете, что мы будем изучать сегодня на уроке? Сформулируйте тему урока. Итак, открываем тетради и записываем тему урока «Решение дробных рациональных уравнений».

2. Актуализация знаний. Фронтальный опрос, устная работа с классом.

А сейчас мы повторим основной теоретический материл, который понадобиться нам для изучения новой темы. Ответьте, пожалуйста, на следующие вопросы:

  1. Что такое уравнение? (Равенство с переменной или переменными.)
  2. Как называется уравнение №1? (Линейное.) Способ решения линейных уравнений. (Все с неизвестным перенести в левую часть уравнения, все числа — в правую. Привести подобные слагаемые. Найти неизвестный множитель).
  3. Как называется уравнение №3? (Квадратное.) Способы решения квадратных уравнений. (Выделение полного квадрата, по формулам, используя теорему Виета и ее следствия.)
  4. Что такое пропорция? (Равенство двух отношений.) Основное свойство пропорции. (Если пропорция верна, то произведение ее крайних членов равно произведению средних членов.)
  5. Какие свойства используются при решении уравнений? (1. Если в уравнении перенести слагаемое из одной части в другую, изменив его знак, то получится уравнение, равносильное данному. 2. Если обе части уравнения умножить или разделить на одно и то же отличное от нуля число, то получится уравнение, равносильное данному.)
  6. Когда дробь равна нулю? (Дробь равна нулю, когда числитель равен нулю, а знаменатель не равен нулю.)

3. Объяснение нового материала.

Решить в тетрадях и на доске уравнение №2.

Какое дробно-рациональное уравнение можно попробовать решить, используя основное свойство пропорции? (№5).

х 2 -4х-2х+8 = х 2 +3х+2х+6

х 2 -6х-х 2 -5х = 6-8

Решить в тетрадях и на доске уравнение №4.

Какое дробно-рациональное уравнение можно попробовать решить, умножая обе части уравнения на знаменатель? (№6).

Теперь попытайтесь решить уравнение №7 одним из способов.

Рациональное уравнение – это уравнение вида $f(x)=g(x)$, где $f(x)$ и $g(x)$ — рациональные выражения.

Рациональные выражения — это целые и дробные выражения, соединённые между собой знаками арифметических действий: деления, умножения, сложения или вычитания, возведения в целую степень и знаками последовательности этих выражений.

$<2>/+5x=7$ – рациональное уравнение

$3x+√x=7$ — иррациональное уравнение (содержит корень)

Если хотя бы в одной части рационального уравнения содержится дробь, то уравнение называется дробно рациональным.

Чтобы решить дробно рациональное уравнение, необходимо:

  1. Найти значения переменной, при которых уравнение не имеет смысл (ОДЗ);
  2. Найти общий знаменатель дробей, входящих в уравнение;
  3. Умножить обе части уравнения на общий знаменатель;
  4. Решить получившееся целое уравнение;
  5. Исключить из его корней те, которые обращают в ноль общий знаменатель.

Решить уравнение: $4x+1-<3>/=0$

1. находим значения переменной, при которых уравнение не имеет смысл (ОДЗ)

2. находим общий знаменатель дробей и умножаем на него обе части уравнения

3. решаем полученное уравнение

Решим вторым устным способом, т.к. $а+с=b$

4. исключаем те корни, при которых общий знаменатель равен нулю

В первом пункте получилось, что при $x = 0$ уравнение не имеет смысл, среди корней уравнения нуля нет, значит, оба корня нам подходят.

При решении уравнения с двумя дробями, можно использовать основное свойство пропорции.

Находим значения переменной, при которых уравнение не имеет смысл (ОДЗ)

Воспользуемся основным свойством пропорции

Раскроем скобки и соберем все слагаемые в левой стороне

Решим данное квадратное уравнение первым устным способом, т.к. $a+b+c=0$

В первом пункте получилось, что при x = 0 уравнение не имеет смысл, среди корней уравнения нуля нет, значит, оба корня нам подходят.

(bullet) Рациональное уравнение — это уравнение, представимое в виде [dfrac=0] где (P(x), Q(x)) — многочлены (сумма “иксов” в различных степенях, умноженных на различные числа).
Выражение в левой части уравнения называется рациональным выражением.
ОДЗ (область допустимых значений) рационального уравнения – это все значения (x) , при которых знаменатель НЕ обращается в нуль, то есть (Q(x)ne 0) .
(bullet) Например, уравнения [dfrac=0,qquad dfrac 2=3, qquad x^5-3x=2] являются рациональными уравнениями.
В первом уравнении ОДЗ – это все (x) , такие что (xne 3) (пишут (xin (-infty;3)cup(3;+infty)) ); во втором уравнении – это все (x) , такие что (xne -1; xne 1) (пишут (xin (-infty;-1)cup(-1;1)cup(1;+infty)) ); а в третьем уравнении никаких ограничений на ОДЗ нет, то есть ОДЗ – это все (x) (пишут (xinmathbb) ). (bullet) Теоремы:
1) Произведение двух множителей равно нулю тогда и только тогда, когда один из них равен нулю, а другой при этом не теряет смысла, следовательно, уравнение (f(x)cdot g(x)=0) равносильно системе [begin left[ beginbegin &f(x)=0 &g(x)=0 end end right. text <ОДЗ уравнения>end] 2) Дробь равна нулю тогда и только тогда, когда числитель равен нулю, а знаменатель не равен нулю, следовательно, уравнение (dfrac=0) равносильно системе уравнений [begin f(x)=0 g(x)ne 0 end] (bullet) Рассмотрим несколько примеров.

1) Решите уравнение (x+1=dfrac 2x) . Найдем ОДЗ данного уравнения – это (xne 0) (так как (x) находится в знаменателе).
Значит, ОДЗ можно записать так: (xin (-infty;0)cup(0;+infty)) .
Перенесем все слагаемые в одну часть и приведем к общему знаменателю: [dfrac<(x+1)cdot x>x-dfrac 2x=0quadLeftrightarrowquad dfracx=0quadLeftrightarrowquad begin x^2+x-2=0xne 0end] Решением первого уравнения системы будут (x=-2, x=1) . Видим, что оба корня ненулевые. Следовательно, ответ: (xin <-2;1>) .

2) Решите уравнение (left(dfrac4x — 2right)cdot (x^2-x)=0) . Найдем ОДЗ данного уравнения. Видим, что единственное значение (x) , при котором левая часть не имеет смысла – это (x=0) . Значит, ОДЗ можно записать так: (xin (-infty;0)cup(0;+infty)) .
Таким образом, данное уравнение равносильно системе:

[begin left[ beginbegin &dfrac 4x-2=0 &x^2-x=0 end end right. xne 0 end quad Leftrightarrow quad begin left[ beginbegin &dfrac 4x=2 &x(x-1)=0 end end right. xne 0 end quad Leftrightarrow quad begin left[ beginbegin &x=2 &x=1 &x=0 end end right. xne 0 end quad Leftrightarrow quad left[ beginbegin &x=2 &x=1 end end right.] Действительно, несмотря на то, что (x=0) — корень второго множителя, если подставить (x=0) в изначальное уравнение, то оно не будет иметь смысла, т.к. не определено выражение (dfrac 40) .
Таким образом, решением данного уравнения являются (xin <1;2>) .

3) Решите уравнение [dfrac<4x^2-1>=dfrac<3-x-x^2><4x^2-1>] В нашем уравнении (4x^2-1ne 0) , откуда ((2x-1)(2x+1)ne 0) , то есть (xne -frac12; frac12) .
Перенесем все слагаемые в левую часть и приведем к общему знаменателю:

(dfrac<4x^2-1>=dfrac<3-x-x^2> <4x^2-1>quad Leftrightarrow quad dfrac<4x^2-1>=0quad Leftrightarrow quad dfrac<2x^2+5x-3><4x^2-1>=0 quad Leftrightarrow)

(Leftrightarrow quad begin 2x^2+5x-3=0 4x^2-1ne 0 end quad Leftrightarrow quad begin (2x-1)(x+3)=0 (2x-1)(2x+1)ne 0 end quad Leftrightarrow quad begin left[ begin begin &x=dfrac12[2ex] &x=-3 endend right.[2ex] xne dfrac 12[2ex] xne -dfrac 12 end quad Leftrightarrow quad x=-3)

Замечание. Если ответ состоит из конечного набора чисел, то их можно записывать через точку с запятой в фигурных скобках, как показано в предыдущих примерах.

Задачи, в которых требуется решить рациональные уравнения, в ЕГЭ по математике встречаются каждый год, поэтому при подготовке к прохождению аттестационного испытания выпускникам непременно стоит самостоятельно повторить теорию по данной теме. Уметь справляться с такими заданиями обязательно должны выпускники, сдающие как базовый, так и профильный уровень экзамена. Усвоив теорию и разобравшись с практическими упражнениями по теме «Рациональные уравнения», учащиеся смогут решать задачи с любым количеством действий и рассчитывать на получение конкурентных баллов по итогам сдачи ЕГЭ.

Как подготовиться к экзамену вместе с образовательным порталом «Школково»?

Иногда найти источник, в котором полноценно представлена базовая теория для решения математических задач, оказывается достаточно сложно. Учебника может просто не оказаться под рукой. А найти необходимые формулы иногда бывает достаточно сложно даже в Интернете.

Образовательный портал «Школково» избавит вас от необходимости поиска нужного материала и поможет качественного подготовиться к прохождению аттестационного испытания.

Всю необходимую теорию по теме «Рациональные уравнения» наши специалисты подготовили и изложили в максимально доступной форме. Изучив представленную информацию, учащиеся смогут восполнить пробелы в знаниях.

Для успешной подготовки к ЕГЭ выпускникам необходимо не только освежить в памяти базовый теоретический материал по теме «Рациональные уравнения», но попрактиковаться в выполнении заданий на конкретных примерах. Большая подборка задач представлена в разделе «Каталог».

Для каждого упражнения на сайте наши специалисты прописали алгоритм решения и указали правильный ответ. Учащиеся могут практиковаться в решении задач различной степени сложности в зависимости от уровня подготовки. Перечень заданий в соответствующем разделе постоянно дополняется и обновляется.

Изучить теоретический материал и отточить навыки решения задач по теме «Рациональные уравнения», подобных тем, которые включены в тесты ЕГЭ, можно в режиме онлайн. В случае необходимости любое из представленных заданий можно добавить в раздел «Избранное». Еще раз повторив базовую теорию по теме «Рациональные уравнения», старшеклассник сможет в дальнейшем вернуться к задаче, чтобы обсудить ход ее решения с преподавателем на уроке алгебры.

Тема: Решение задач с помощью дробных рациональных уравнений

Содержание модуля (краткое изложение модуля):

Рассмотрим задачу №1.
При совместной работе двух программистов программа была написана за 6 ч. Сколько времени потребовалось бы каждому программисту отдельно для написания программы, если первому программисту для этого требуется на 5 часов больше, чем второму?
Составим таблицу с данными по основным величинам: производительность (скорость работы), время и работа.

Производительность Время Работа
Программист 1 1/(x + 5) х + 5 ч. 1
Программист 2 1/x х ч. 1
Совместная работа 1/6 6 ч. 1

Запишем уравнение, отражающее производительность при совместной работе двух программистов
1/(x + 5) + 1/x = 1/6
По смыслу задачи х ≠ 0 и х ≠ 5. Умножим обе части уравнения на наименьший общий знаменатель дробей 6х(х + 5)
(1 • 6x(x + 5))/(x + 5) + (1 • 6x(x + 5))/x = (1 • 6x(x + 5))/6
После преобразований, решим уравнение
6x + 6(x + 5) = x(x + 5)
6x + 6x + 30 = x 2 + 5x
x 2 — 7x — 30 = 0
x1 = 10; x2 = -3
Значение –3 не подходит по смыслу задачи, значит, второй программист напишет программу за 10 часов, а первый потратит на 5 часов больше, то есть 15 часов. t1 = 15ч; t2 = 10ч.
Рассмотрим задачу №2.
В лимонад добавили 150 граммов воды. В результате концентрация сахара в лимонаде уменьшилась на 3%. Определим первоначальную массу лимонада, если известно, что в нём содержалось 65 граммов сахара.
Основные величины задачи: масса лимонада, масса сахара и концентрация сахара. Составим таблицу

Масса лимонада Масса сахара Концентрация сахара
Лимонад х г 65 г 65/x • 100%
Лимонад с добавлением воды х + 150 г 65 г 65/(x + 150) • 100%

Запишем уравнение
65/x • 100% — 65/(x + 150) • 100% = 3%
По смыслу задачи х ≠ 0 и х ≠ –150. Умножим обе части уравнения на наименьший общий знаменатель дробей х(х + 150)
(65 • x(x + 150))/x • 100% — (65 • x(x + 150))/(x + 150) • 100% = 3% • x(x + 150)
После преобразований, решим уравнение
6500(x + 150) — 6500x = 3x(x + 150)
6500x + 6500 • 150 — 6500x = 3x 2 + 450x
3x 2 + 450x — 6500 • 150 = 0
x 2 + 150x — 6500 • 50 = 0
x1 = 500; x2 = -650
Значение –650 не подходит по смыслу задачи, значит, первоначальная масса лимонада 500 граммов.

Алгебра. 8 класс: учеб. для общеобразоват. организаций / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. – 6-е изд. – М.: Просвещение, 2017.

Восстановите порядок действий при решении дробного рационального уравнения.

В алгебре все рациональные уравнения содержат рациональные выражения. Прежде чем дать определение, нужно выделить понятие рационального выражения.

Это не что иное, как запись, состоящая из переменного значения х и чисел, представленная с помощью арифметических действий: сложения, умножения, вычитания, деления, а также возведения в степень с натуральным показателем.

  1. Что такое рациональные уравнения
  2. Алгоритм решения рациональных уравнений
  3. Основные алгебраические формулы
  4. Преобразования, упрощающие решение рациональных уравнений
  5. Примеры решений уравнений с дробями
  6. Методы решения
  7. Пример решения с разложением на множители

Что такое рациональные уравнения

Математики дают двоякое объяснение рациональному уравнению:

  1. Если обе части уравнения представляют собой рациональные выражения, такое уравнение является рациональным.
  2. Уравнение, в левой части которого рациональное выражение, а в правой стоит ноль, являются рациональным.

Например, алгебраическая запись следующего вида является рациональным уравнением:

2x − 12x 2 yz 3 = 0.

Алгоритм решения рациональных уравнений

Чтобы решить уравнение из рассматриваемой темы, нужно сделать следующие шаги:

  1. Для начала потребуется все члены уравнения переместить в одну часть.
  2. Определить общий знаменатель.
  3. Следующим шагом определяются множители, на которые умножаются члены равенства и выполняется преобразование этой части уравнения к алгебраической дроби.
  4. Решается уравнение вида p(x) = 0.
  5. Для каждого найденного корня уравнения p(x) = 0 делается проверочное действие. Если выполняется условие q(x) ≠ 0, то это значение является корнем заданного уравнения. В противном случае значение признается посторонним корнем. Оно не включается в ответ.

Рациональные уравнения являются краеугольным камнем всего курса алгебры. Человеку, научившемуся работать с подобными выражениями, умеющему упрощать, раскладывать на множители, под силу решение любой задачи, ведь преобразование выражений — это одна из составляющих частей решения серьёзного уравнения или неравенства.

Основные алгебраические формулы

Для решения квадратных уравнений есть формулы и правила сокращённого умножения, которые начинают изучать уже в средних классах общеобразовательных школ:

  1. a 2 −b 2 =(a−b)(a+b) — разность квадратов.
  2. (a+b) 2 =a 2 +2ab+b 2 — квадрат суммы.
  3. (a−b) 2 =a 2 −2ab+b 2 — квадрат разности.
  4. a 3 +b 3 =(a+b)(a2−ab+b2) — сумма кубов.
  5. a 3 −b 3 =(a−b)(a 2 +ab+b 2 ) — разность кубов.

Преобразования, упрощающие решение рациональных уравнений

Преобразования равносильны, если получается новое уравнение, причем корни будут такими же, как в изначальном выражении.

Деление или умножение уравнения на любое, отличное от нуля число, является равносильным преобразованием. Перенос параметров уравнения через знак равенства в ту или иную часть — тоже тождественное преобразование.

Примеры решений уравнений с дробями

Алгоритм решения следующий: все части приводятся к общему знаменателю. Но после того, как найдены корни при использовании неравносильных преобразований, они проверяются методом подстановки в уравнение.

Приведем дробь к такому виду:

С учетом всего этого получится выражение:

Методы решения

Наиболее часто используемые способы для решения уравнений со степенями:

  • метод замены переменной;
  • разложение на множители.

Биквадратные уравнения типа ax 4 + bx 2 + c = 0 решаются методом замены множителя: x 2 = y.

Системы линейных уравнений также решаются методом замены.

К примеру, требуется решить систему линейных уравнений:

Принцип решения сводится к тому, что надо избавиться от лишней переменной:

Далее уравнение решается просто.

Пример решения с разложением на множители

Любые сложные вычисления нужно выполнять по действиям. Так проще избавиться от ненужных ошибок.

Алгоритм решения такой: вначале выполняется действие, заключённое в скобках, затем выполняется то, что записано во второй скобке и так далее. В конце все части объединяются, и находится результат.

Для самостоятельной работы при решении рациональных уравнений можно использовать онлайн-калькулятор. Он помогает лучше усвоить некоторые методы решения и быстрее справиться с заданиями.

Опубликовано
В рубрике IT