Как находить объем

Изучение объемных фигур начинается со школы. В это время происходит знакомство с цилиндром, параллелепипедом, шаром, конусом и другими геометрическими телами. Одна из главных задача, которая сопровождает учеников, это вычисление объема фигур. Оперируя формулами, удается произвести расчет и получить ответ в метрах кубических (м 3 ).

Чтобы вычислить объем, применяйте следующее правило – длину, ширину и высоту нужно перемножить между собой. Объем для каждой фигуры рассчитывается по специальной формуле, о которых, мы расскажем ниже.

Содержание:

  1. Как найти объем трехмерных объектов
  2. Как найти объем для фигур цилиндрической формы
  3. Как рассчитать объем треугольной пирамиды
  4. Как посчитать объем куба
  5. Как найти объем прямоугольного параллелепипеда
  6. Как найти объем цилиндра
  7. Как найти объем пирамиды

Как найти объем трехмерных объектов

Начнем с расчета для прямоугольных и квадратных фигур. Придерживайтесь инструкции и постарайтесь рассчитать самостоятельно, чтобы закрепить знания. Числа, указанные в описании, берутся в качестве примера. Вы можете производить другие расчеты.

  1. Измеряем длину предмета в сантиметрах – 9. Сантиметры приходят на помощь, когда невозможно получить целое число в метрах .
  2. Замеряем ширину в сантиметрах – 17.
  3. Умножаем между собой длину и ширину 9 * 17 = 152 см 2 – получили площадь основания
  4. Производим замер высоты – 28 см.
  5. Умножаем площадь основания на высоту 152 см 2 * 28 см = 4256.

Полученное число необходимо перевести в кубические метры. Для этого конечный результат делим на 1.000.000. Пример будет выглядеть следующим образом – 4256 м 3 /1000000 = 0,004256 м 3

Как найти объем для фигур цилиндрической формы

Цилиндр – это тело, ограниченное цилиндрической поверхностью с замкнутой направляющей и двумя параллельными плоскостями. Одним из видов цилиндра является призма.

Чтобы произвести вычисления нужно найти диаметр тела (ширина) одного круглого основания и полученное число поделить на 2. Допустим, диаметр основания равен 30 см.

  1. Производим расчеты: 30 см / 2 = 15 см. Половина диаметра круга ‒ радиус.
  2. Возводим полученный радиус в квадрат или умножаем самого на себя: 15 * 15 = 225 см 2 .
  3. Полученное число 225 см 2 – это квадрат радиуса. Эту цифру умножаем на число ПИ — 3,14. Например: 225 см 2 * 3,14 = 706,5 см 2 .
  4. Проводим новый замер, чтобы узнать расстояние между круглыми основаниями, допустим, оно равно 12 см.
  5. Это число умножаем на площадь круглого основания: 706,5 см 2 * 12 см = 8 478 см 3
  6. Полученное значение и будет искомым объемом. Для перевода в кубические метры необходимо конечное число поделить на один миллион. Как мы делали в предыдущем примере.

Как рассчитать объем треугольной пирамиды

Пирамида – это многогранник, где есть одна грань основания и боковые грани. Пирамиды бывают треугольные, четырехугольные и другие. Также есть правильная и усеченная пирамида. Объем для каждой фигуры рассчитывается по разным формулам.

  1. Чтобы найти объём пирамиды замеряем длину стороны треугольника в основании пирамиды, предположим, что он равен 10 см.
  2. Затем повторим то же самое, но с высотой – 13 см.
  3. Длину высоты и стороны необходимо перемножить между собой и разделить на 2: 10 *13 = 130 см 2 / 2 =65 см 2 .
  4. Замеряем высоту пирамиды – 33 см.
  5. Умножаем площадь треугольника у основания на высоту и делим на 3. Например: 65 см 2 * 33 см =2 145 см 2 / 3 = 715 см 3 .
  6. Для преобразования в кубические метры производим деление конечного числа на миллион.

Расчёт четырехгранной пирамиды производится тем же принципом. Потренируйтесь, используя разные задачи. Чтобы все замеры происходили правильно, не забудьте обзавестись хорошей линейкой, также на помощь придёт калькулятор, который поможет перемножать числа между собой.

В интернете представлено много онлайн-калькулятор, они дают подсказку и позволяют без лишних трудностей рассчитать объём куба, цилиндра и других фигур. Перед началом пользования таких подсказок, необходимо обладать базовыми знаниями, чтобы быстрее разобраться в полученном результате.

Как посчитать объем куба

Параллелепипед складывается из шести граней, которые являются параллелограммом. Все противоположные грани попарно равны и параллельны. Фигура получилась 4 диагонали, и все они пересекаются в одной точке, разделяют эту точку пополам. Параллелепипед, грани которого являются квадратами, будет называться кубом.

Все рёбра куба всегда будут равны. Для проведения вычислений, воспользуйтесь следующей формулой V = H 3 , где H ‒ высота ребра куба. Например: высота куба равняется ‒ 3 см, получается, что объем равен 3 3 = 27 см 3 .

Как найти объем прямоугольного параллелепипеда

Прямоугольным параллелепипедом называется фигура, у которой все шесть граней прямоугольники. Для вычисления работает следующая формула:

Где H ‒ высота, S ‒ площадь основания, abc – ребра. Чтобы произвести расчеты и найти объём, необходимо узнать произведение площади основания на высоту. Например: 1 см * 2 см * 3 см = 6 см 3

Советы по измерению:

  1. Измерить стороны.
  2. Каждая сторона параллелепипеда должна находиться в одинаковых единицах измерения.
  3. Вычисляем площадь основания.
  4. Умножаем площадь основания на высоту параллелепипеда.

Убедитесь, что перед вами параллелепипед, а не куб, так как в случае с кубом расчетная формула будет проще.

Как найти объем цилиндра

Цилиндр считать круглой фигурой, т.к. в его основании лежит круг. Чтобы произвести вычисления, необходимо узнать произведение площади основания на высоту. Для этого используется следующая формула:

Где r ‒ радиус цилиндра, h – высота цилиндра. Чисто π – является константой и равно 3,14. Оно всегда одинаковое и не требует никаких измерений. Рассмотрим на примере:

3,14 * 2 см 2 * 5 см = 62.831853071796 = 63см 3

Если вы не можете вычислить радиус, измерьте диаметр с помощью формулы преобразования.

Как найти объем пирамиды

фото 6 — посчитать объём

Чтобы произвести расчет объема, нам нужно найти произведение площади основания на высоту. Для вычисления используется следующая формула:

Где S (A*B*C*D*E) – площадь основания пирамиды, а h ‒ высота пирамиды. Рассмотрим на примере:

V = 3 * 2 = 2 см 3 ‒ это и будет являться объемом искомой геометрической фигуры.

Не забывайте, что пирамиды бывают усеченные, правильные, трех- и четырехугольные. Для каждого тела действуют свои расчеты, но важно начинать с основного и не упускать базовые знания, в дальнейшем все примеры будут базироваться именно на них.

Если какая-то формула осталась непонятной, лучше вернуться к этому и поупражняться ещё раз, доведя знание до автоматизма. Так решение задач не будет вызывать сложности. Постоянная практика ‒ это основа успешного результата.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .

1. Расчет объема куба

a — сторона куба

Формула объема куба, (V):

2. Найти по формуле, объем прямоугольного параллелепипеда

a , b , c — стороны параллелепипеда

Еще иногда сторону параллелепипеда, называют ребром.

Формула объема параллелепипеда, (V):

3. Формула для вычисления объема шара, сферы

R радиус шара

По формуле, если дан радиус, можно найти объема шара, (V):

4. Как вычислить объем цилиндра ?

h — высота цилиндра

r — радиус основания

По формуле найти объема цилиндра, есди известны — его радиус основания и высота, (V):

5. Как найти объем конуса ?

R — радиус основания

H — высота конуса

Формула объема конуса, если известны радиус и высота (V):

7. Формула объема усеченного конуса

r — радиус верхнего основания

R — радиус нижнего основания

h — высота конуса

Формула объема усеченного конуса, если известны — радиус нижнего основания, радиус верхнего основания и высота конуса (V ):

8. Объем правильного тетраэдра

Правильный тетраэдр — пирамида у которой все грани, равносторонние треугольники.

а — ребро тетраэдра

Формула, для расчета объема правильного тетраэдра (V):

9. Объем правильной четырехугольной пирамиды

Пирамида, у которой основание квадрат и грани равные, равнобедренные треугольники, называется правильной четырехугольной пирамидой.

a — сторона основания

h — высота пирамиды

Формула для вычисления объема правильной четырехугольной пирамиды, (V):

10. Объем правильной треугольной пирамиды

Пирамида, у которой основание равносторонний треугольник и грани равные, равнобедренные треугольники, называется правильной треугольной пирамидой.

a — сторона основания

h — высота пирамиды

Формула объема правильной треугольной пирамиды, если даны — высота и сторона основания (V):

11. Найти объем правильной пирамиды

Пирамида в основании, которой лежит правильный многоугольник и грани равные треугольники, называется правильной.

h — высота пирамиды

a — сторона основания пирамиды

n — количество сторон многоугольника в основании

Формула объема правильной пирамиды, зная высоту, сторону основания и количество этих сторон (V):

Формула объема необходима для вычисления параметров и характеристик геометрической фигуры.

Объем фигуры — это количественная характеристика пространства, занимаемого телом или веществом. В простейших случаях объём измеряется числом умещающихся в теле единичных кубов, т. е. кубов с ребром, равным единице длины. Объём тела или вместимость сосуда определяется его формой и линейными размерами.

Параллелепипед.

Объем прямоугольного параллелепипеда равен произведению площади основания на высоту.

Цилиндр.

Объем цилиндра равен произведению площади основания на высоту.

Объем цилиндра равен произведению числа пи (3.1415) на квадрат радиуса основания на высоту.

Пирамида.

Объем пирамиды равен одной трети произведения площади основания S (ABCDE) на высоту h (OS).

Правильная пирамида — это пирамида, в основании, которой лежит правильный многоугольник, а высота проходит через центр вписанной окружности в основание.

Правильная треугольная пирамида — это пирамида, у которой основанием является равносторонний треугольник и грани равные равнобедренные треугольники.

Правильная четырехугольная пирамида — это пирамида, у которой основанием является квадрат и грани равные равнобедренные треугольники.

Тетраэдр — это пирамида, у которой все грани — равносторонние треугольники.

Усеченная пирамида.

Объем усеченной пирамиды равен одной трети произведения высоты h (OS) на сумму площадей верхнего основания S1(abcde), нижнего основания усеченной пирамиды S2 (ABCDE) и средней пропорциональной между ними.

Куб.

Вычислить объем куба легко – нужно перемножить длину, ширину и высоту. Так как у куба длина равна ширине и равна высоте, то объем куба равен s 3 .

Конус — это тело в евклидовом пространстве, полученное объединением всех лучей, исходящих из одной точки (вершины конуса) и проходящих через плоскую поверхность.

Усеченный конус получится, если в конусе провести сечение, параллельное основанию.

V = 1/3 πh (R 2 + Rr + r 2 )

Шар.

Объем шара в полтора раза меньше, чем объем описанного вокруг него цилиндра.

Призма.

Объем призмы равен произведению площади основания призмы, на высоту.

Сектор шара.

Объем шарового сектора равен объему пирамиды, основание которой имеет ту же площадь, что и вырезаемая сектором часть шаровой поверхности, а высота равна радиусу шара.

Шаровой слой — это часть шара, заключенная между двумя секущими параллельными плоскостями.

Сегмент шара — это часть шара, осекаемая от него какой-нибудь плоскостью, называется шаровым или сферическим сегментом

Стандартное обозначение объема есть V . Этим мы измеряем количество (наример, воды), которая может заполнить фигуру.
Только пространственные фигуры имеют объем. Например, треугольники, квадраты не имеют объема, но шар имеет объем (потому что он может быть заполнен чем-то, например водой).

Прямоугольный параллелепипед

Прямоугольный параллелепипед это фигура, все стороны которой — прямоугольники.
Если длины стороны прямоугольника в основе есть a и b и третье ребро c
тогда формула объема есть:

Куб есть параллелепипедом, все ребра (стороны) которого равны.

Если длина стороны куба равна a , тогда формула объема:

Параллелепипед

Параллелепипед это фигура, все стороны которой — параллелограммы. Если площадь основы равна S и высота параллелепипеда равны h ,
то формула объема есть:

Пирамида

Пирамида это фигура, основа которой есть треугольник, параллелограмм (квадрат, прямоугольник) или другая фигура с n-углами и треугольными сторонами.
Если площадь основы есть S и высота пирамиды есть h ,
тогда формула ее объема есть:

Правильный тетраэдр

Прямой круговой конус

Конус это фигура с основанием в виде окружности и имеющая одну вершину, как у пирамиды.
Если площадь основы есть S и длиныа стороны конуса равна h ,
то формула объема есть:

Сфера

Сфера есть шар.
Она имеет радиус — расстояние от центральной точки сферы к поверхности. Если длина радиуса есть R , то формула объема есть:

Цилиндр

Цилиндр это фигура с двумя параллельными окружностями.
Если ралиус основы равен r и высота (расстояние между основами) цилиндра есть h ,
то его объем вычисляется по формуле:

Объём — это аддитивная функция от множества (мера), характеризующая вместимость области пространства, которую оно занимает. Изначально возникло и применялось без строгого определения в отношении тел трёхмерного евклидова пространства. Первые точные определения были даны Пеано (1887) и Жорданом (1892). Впоследствии понятие было обобщено Лебегом на более широкий класс множеств.

Для определения объёма существует несколько существенно различных подходов, которые дополняют друг друга и согласованы по конечному результату на «хороших множествах». Обычно под понятием объёма понимается мера Жордана, но иногда мера Лебега. Для римановых многообразий понятие объёма вводится аналогично понятию площади поверхности.

Все формулы объема геометрических тел

Объем куба

Объем куба равен кубу длины его грани.

Формула объема куба:

V = a 3

V — объем куба,
a — длина грани куба.

Объем призмы

Объем призмы равен произведению площади основания призмы, на высоту.

Формула объема призмы:

V- объем призмы,
So — площадь основания призмы,
h — высота призмы.

Объем параллелепипеда

Объем параллелепипеда равен произведению площади основания на высоту.

Формула объема параллелепипеда:

V- объем параллелепипеда,
So — площадь основания,
h — длина высоты.

Объем пирамиды

Объем пирамиды равен одной трети произведения площади основания S (ABCDE) на высоту h (OS).

Формула объема пирамиды:

V — объем пирамиды,
So — площадь основания пирамиды,
h — длина высоты пирамиды.

Объем усеченной пирамиды

Объем усеченной пирамиды равен одной трети произведения высоты h (OS) на сумму площадей верхнего основания S1(abcde), нижнего основания усеченной пирамиды S2 (ABCDE) и средней пропорциональной между ними.

Формула объема усеченной пирамиды:

S1 — площадь верхнего основания усеченной пирамиды,
S2 — площадь нижнего основания усеченной пирамиды,
h — высота усеченной пирамиды.

Объем цилиндра

Объем цилиндра равен произведению площади его основания на высоту.

Формула объема цилиндра:

V= π R 2 h

V= Sоh

V — объем цилиндра,
So — площадь основания цилиндра,
R — радиус цилиндра,
h — высота цилиндра,
π = 3.141592

Объем правильной треугольной пирамиды

Формула объема правильной треугольной пирамиды:

V — объем пирамиды;
h — высота пирамиды;
a — сторона основания пирамиды.

Объем конуса

Объем круглого конуса равен трети произведения площади основания S на высоту H.

Формула объема конуса:

V — объем конуса;
R — радиус основания;
H — высота конуса;
I — длина образующей;
S — площадь боковой поверхности конуса.

Объем усеченного конуса

Объем усеченного конуса равен разности объемов двух полных конусов.

Формула объема усеченного конуса:

V — объем усеченного конуса;
H — высота усеченного конуса;
R и R 2 — радиусы нижнего и верхнего оснований.

Объем тетраэдра

Объем тетраэдра рассчитывается по классической формуле объема пирамиды. В нее нужно подставить высоту тетраэдра и площадь правильного (равностороннего) треугольника.

Формула тетраэдра:

V — объем тетраэдра;
a — ребро тетраэдра.

Объем шара

Объем шара равен четырем третьим от его радиуса в кубе перемноженного на число пи.

Формула объема шара:

V — объем шара;
R — радиус шара;
S — площадь сферы.

Объем шарового сегмента и сектора

Шаровый сегмент — это часть шара отсеченная плоскостью. В данном примере, плоскостью ABCD.

Формула объема шарового сегмента:

R — радиус шара
H — высота сегмента
π ≈ 3,14

Формула объема шарового сектора:

h — высота сегмента
R — радиус шара
π ≈ 3,14

Объем прямоугольного параллелепипеда

Объем прямоугольного параллелепипеда равен произведению его длины, ширины и высоты.

Формула объема прямоугольного параллелепипеда:

V — объем прямоугольного параллелепипеда,
a — длина,
b — ширина,
h — высота.

Объемы геометрических тел

Раньше для определения объемов геометрических тел традиционно использовались интегралы. Сегодня есть и другие подходы, которые подробно представлены в учебниках нашей корпорации. В одном из вебинаров «Российского учебника» учитель высшей категории Алексей Доронин рассказал о методах определения объема разных геометрических тел с помощью принципа Кавальери и других аксиом.

Определение объема

Объем можно определить как функцию V на множестве многогранников, удовлетворяющую следующим аксиомам:

  • V сохраняется при движениях.
  • V удовлетворяет принципу Кавальери.
  • Если внутренности многогранников M и N не пересекаются, то V(M ∪ N) = V(M) + V(N).
  • Объем прямоугольного параллелепипеда V = abc.

Принцип Кавальери (итальянского математика, ученика Галилея). Если при пересечении двух тел плоскостями, параллельными одной и той же плоскости, в сечениях этих тел любой из плоскостей получаются фигуры, площади которых относятся как m : n, то объемы данных тел относятся как m : n.

В открытом банке заданий ЕГЭ есть много задач для отработки этого способа определения объема.

Примеры

Задача 1. Два ребра прямоугольного параллелепипеда, выходящие из одной вершины, равны 2 и 6. Объем параллелепипеда равен 48. Найдите третье ребро параллелепипеда, выходящее из той же вершины.

Задача 2. Найдите объем многогранника, изображенного на рисунке (все двугранные углы прямые).

Задача 3. Найдите объем многогранника, изображенного на рисунке (все двугранные углы прямые).

Разберем, как можно вычислять объемы изучаемых в школе фигур.

Объем призмы

В представленном случае известны площадь основания и высота призмы. Чтобы найти объем, используем принцип Кавальери. Рядом с призмой (Ф2) поместим прямоугольный параллелепипед (Ф1), в основании которого — прямоугольник с такой же площадью, как у основания призмы. Высота у параллелепипеда такая же, как у наклонного ребра призмы. Обозначим третью плоскость (α) и рассмотрим сечение. В сечении виден прямоугольник с площадью S и, во втором случае, многоугольник тоже с площадью S. Далее вычисляем по формуле:

V Sосн h

Объем пирамиды

Лемма: две треугольные пирамиды с равновеликими основаниями и равными высотами равновелики. Докажем это, используя принцип Кавальери.

Возьмем две пирамиды одинаковой высоты и заключим их между двумя параллельными плоскостями α и β. Обозначим также секущую плоскость и треугольники в сечениях. Заметим, что отношения площадей этих треугольников связаны непосредственно с отношением оснований.

V 1/V2 = 1 V1 = V2

Известно, что объем любой пирамиды равен одной трети произведения площади основания на высоту. Данной теоремой апеллируют довольно часто. Однако откуда в формуле объема пирамиды появляется коэффициент 1/3? Чтобы понять это, возьмем призму и разобьем ее на 3 треугольные пирамиды:

Vпризмы S h = 3V

Объем цилиндра

Возьмем прямой круговой цилиндр, в котором известны радиус основания и высота. Рядом поместим прямоугольный параллелепипед, в основании которого лежит квадрат. Рассмотрим:

Vцил = πh × R 2

Объем конуса

Конус лучше всего сравнивать с пирамидой. Например, с правильной четырехугольной пирамидой с квадратом в основании. Две фигуры с равными высотами заключаем в две параллельные плоскости. Обозначив третью плоскость, в сечении получаем круг и квадрат. Представления о подобиях приводят к числу π.

SФ1/SФ2 = π

Vконуса = 1/3 πR 2 h

Объем шара

Объем шара — одна из наиболее сложных тем. Если предыдущие фигуры можно продуктивно разобрать за один урок, то шар лучше отложить на последующее занятие.

Чтобы найти объем шара, шар часто предлагается сравнить со сложным геометрическим телом, которое связано с конусом и цилиндром. Но не стоит строить цилиндр, из которого вырезан конус, или вроде того. Возьмем половину шара с высотой R и радиусом R, а также конус и цилиндр с аналогичными высотами и радиусами оснований. Обратимся к полезным материалам на сайте «Математические этюды» , где объем шара рассматривается с использованием весов Архимеда. Цилиндр располагается на одной стороне уравновешенных весов, конус и половина шара — на другой.

Заключаем геометрические фигуры в две параллельные плоскости и смотрим, что получается в сечении. У цилиндра — круг с площадью πR 2 . Как известно, если внутренности геометрических тел не пересекаются, то объем их объединения равен сумме объемов. Пусть в конусе и в половине шара расстояние до плоскости сечения будет x. Радиус — тоже x. Тогда площадь сечения конуса — π ∙ x 2 . Расстояние от середины верха половины шара к краю сечения — R. Площадь сечения половины шара: π(R 2 — x 2 ).

Заметим, что: πR 2 + πR 2 — πR 2 = πR 2

Vцил = πR 2 × R = πR 3 = 1/3 R 3 π + Vшара

Vшара = 4/3 πR 3

Итак, чтобы найти объем нового, не изученного геометрического тела, нужно сравнить его с тем телом, которое наиболее на него похоже. Многочисленные примеры заданий из открытого банка задач показывают, что в работе с фигурами имеет смысл использовать представленные формулы и аксиомы.

Понятие объема

Чтобы без труда вычислить объём любой фигуры, нужно разобраться с определениями.

Объём — это количественная характеристика пространства, занимаемого телом или веществом.

Другими словами, это то, сколько места занимает предмет.

Объём измеряется в единицах измерения объема (единицах измерения размера пространства, занимаемого телом), то есть в кубических метрах, сантиметрах, миллиметрах.

За единицу измерения объёма можно принять куб с ребром 1 см, то есть, кубический сантиметр (см3), кубический миллиметр (1 мм3), кубический метр (1 м3).

Объём всегда выражается в положительных числах. Это число показывает, какое именно количество единиц измерения есть в теле. Например, сколько воды в бассейне, вина в бочке, земли в клумбе.

Два свойства объёма

Любое объемное тело имеет объем. Получается, при желании мы можем вычислить объем кружки, смартфона, вазы, кота — чего угодно.

Объем прямоугольного параллелепипеда

Давайте вспомним, какие виды параллелепипедов бывают.

Параллелепипедом называется призма, основаниями которой являются параллелограммы. Другими словами, параллелепипед — это многогранник с шестью гранями. Каждая грань которой называется параллелограмм.

Призма — это многогранник, в основаниях которого лежат равные многоугольники, а его боковые грани — это параллелограммы.

Какие бывают призмы:

Прямой параллелепипед — это параллелепипед, у которого боковые ребра перпендикулярны основанию.

Прямоугольным параллелепипедом называют параллелепипед, у которого основание — прямоугольник, а боковые ребра перпендикулярны основанию.

Формула объема прямоугольного параллелепипеда

Чтобы вычислить объем прямоугольного параллелепипеда, найдите произведение его длины, ширины и высоты:

V = a * b * h

Чтобы не запутаться в формулах, запоминайте табличку с условными обозначениями.

площадь боковой поверхности

площадь полной поверхности

Пример 1. Чему равен объем параллелепипеда со сторонами 9 см, 6 см, 3 см.

V = 9 * 6 * 3 = 162 см3.

Ответ: объем прямоугольного параллелепипеда равен 162 см3.

Следствие 1

Объем параллелепипеда равен произведению площади основания на высоту.

Из этого следствия выведем формулу нахождения площади основания параллелепипеда.

S осн = V : h

Пример 2. Найдите площадь основания параллелепипеда, если его объем равен 82 см3, а высота 8 см.

S осн = 82 см3: 8 см = 10,25 см2.

Ответ: площадь основания параллелепипеда равна 10,25 см2.

Следствие 2

Объём прямой призмы, основанием которой является прямоугольный треугольник, равен произведению площади основания на высоту.

V = S осн * h

Пример 3. Основанием прямой призмы служит прямоугольный треугольник с катетами 6 и 8 см. Боковое ребро равно 5. Найдем объем призмы.

V = S * h = 12* a * b * h

V = 1/2 * 6 * 8 * 5 = 120 см3.

Ответ: объём прямой призмы, основанием которой является прямоугольный треугольник, равен 120 см3.

С каждым годом геометрия становится все более объемной. Формулы множатся, а задачки усложняются. В детской онлайн-школе Skysmart ваш ребенок сможет заполнить пробелы, разобрать сложные темы и научиться доказывать любые теоремы.

Записывайтесь на бесплатный вводный урок и знакомьтесь с устройством учебной платформы лично.

Вычисление площади

Как вы уже поняли, вычисление объёма параллелепипеда напрямую зависит от вычисления его площади. Давайте разберемся, сколько всего площадей можно найти в параллелепипеде.

Чтобы найти площадь боковой поверхности параллелепипеда, вычислите по отдельности площадь каждой боковой грани, а затем найдите сумму получившихся значений.

  • S б.п. = 2(ac + bc)

Чтобы вычислить площадь полной поверхности параллелепипеда, сложите площадь боковой поверхности и две площади основания.

  • S п.п. = 2 (ab + ac + bc)

Пример 4. Найдем площадь поверхности параллелепипеда, если длина основания равна 6 сантиметров, ширина — 4 см соответственно, а высота — 3 см.

S п.п. = 2 (ab + ac + bc)

S п.п. = 2(6 * 4 + 6 * 3 + 4 * 3) = 2 * (24 + 18 + 12) = 2 * 54 = 108 см2.

Ответ: площадь поверхности параллелепипеда — 108 см2.

Как видите, вычислить объём и найти площадь параллелепипеда совсем не трудно. В интернете есть много онлайн-калькуляторов, которые помогут вам быстро вычислить объем:

Задачи на самопроверку

Пользоваться онлайн-калькуляторами можно, когда вы уже натренировались в решении задачек и с закрытыми глазами можете вычислить объем любого параллелепипеда. Давайте разберем еще несколько примеров.

Задачка 1. Найдите объём параллелепипеда со сторонами 18 см, 10 см, 7 см.

Формула нахождения объема параллелепипеда:

Подставляем наши числа:

V = 18 * 10 * 7 = 1260 см3.

Ответ: объём параллелепипеда = 1260 см3.

Задачка 2. Найдите площадь основания параллелепипеда, если его объём = 120 см3, а высота — 15 см.

S осн = 120 см3: 15 см = 8 см2.

Ответ: площадь основания параллелепипеда = 8 см2.

Задачка 3. Найдите площадь полной поверхности прямоугольного параллелепипеда, если длина основания = 30 сантиметров, ширина = 12 см, а высота = 5 см.

S п.п. = 2 (ab + ac + bc)

S п.п. = 2(30 * 12 + 30 *5 + 12 * 5) = 2 * (360 + 150 + 60) = 2 * 570 = 1140 см2.

Ответ: площадь полной поверхности параллелепипеда = 1140 см2.

Пусть все необходимые формулы будут под рукой в нужный момент. Сохраняйте табличку-шпаргалку на гаджет или распечатайте ее и храните в учебнике.