Как округлять числа

Округление мы часто используем в повседневной жизни. Если расстояние от дома до школы будет 503 метра. Мы можем сказать, округлив значение, что расстояние от дома до школы 500 метров. То есть мы приблизили число 503 к более легко воспринимающемуся числу 500. Например, булка хлеба весит 498 грамм, то можно сказать округлив результат, что булка хлеба весит 500 грамм.

Округление – это приближение числа к более “легкому” числу для восприятия человека.

В итоге округления получается приближенное число. Округление обозначается символом ≈, такой символ читается “приближённо равно”.

Можно записать 503≈500 или 498≈500.

Читается такая запись, как “пятьсот три приближенно равно пятистам” или “четыреста девяносто восемь приближенно равно пятистам”.

Разберем еще пример:

4 4 71≈4000 4 5 71≈5000

4 3 71≈4000 4 6 71≈5000

4 2 71≈4000 4 7 71≈5000

4 1 71≈4000 4 8 71≈5000

4 0 71≈4000 4 9 71≈5000

В данном примере было произведено округление чисел до разряда тысяч. Если посмотреть закономерность округления, то увидим, что в одном случае числа округляются в меньшую сторону, а в другом – в большую. После округления все остальные числа после разряда тысяч заменили на нули.

Правила округления чисел:

1) Если округляемая цифра равна 0, 1, 2, 3, 4, то цифра разряда до которого идет округление не меняется, а остальные числа заменяются нулями.

2) Если округляемая цифра равна 5, 6, 7, 8, 9, то цифра разряда до которого идет округление становиться на 1 больше, а остальные числа заменяются нулями.

1) Выполните округление до разряда десятков числа 364.

Разряд десятков в данном примере это число 6. После шестерки стоит число 4. По правилу округления цифра 4 разряд десятков не меняет. Записываем вместо 4 нуль. Получаем:

2) Выполните округление до разряда сотен числа 4 781.

Разряд сотен в данном примере это число 7. После семерки стоит цифра 8, которая влияет на то измениться ли разряд сотен или нет. По правилу округления цифра 8 увеличивает разряд сотен на 1, а остальные цифры заменяем нулями. Получаем:

3) Выполните округление до разряда тысяч числа 215 936.

Разряд тысяч в данном примере это число 5. После пятерки стоит цифра 9, которая влияет на то измениться ли разряд тысяч или нет. По правилу округления цифра 9 увеличивает разряд тысяч на 1, а остальные цифры заменяются нулями. Получаем:

21 5 9 36≈21 6 000

4) Выполните округление до разряда десятков тысяч числа 1 302 894.

Разряд тысяч в данном примере это число 0. После нуля стоит цифра 2, которая влияет на то измениться ли разряд десятков тысяч или нет. По правилу округления цифра 2 разряд десятков тысяч не меняет, заменяем на нуль этот разряд и все разряды младшие разряды. Получаем:

13 0 2 894≈13 0 0000

Если точное значение числа неважно, то значение числа округляют и можно выполнять вычислительные операции с приближенными значениями. Результат вычисления называют прикидкой результата действий.

Например: 598⋅23≈600⋅20≈12000 сравним с 598⋅23=13754

Прикидкой результата действий пользуются для того, чтобы быстро посчитать ответ.

Примеры на задания по теме округление:

Пример №1:
Определите до какого разряда сделано округление:
а) 3457987≈3500000 б)4573426≈4573000 в)16784≈17000
Вспомним какие бывают разряды на числе 3457987.

7 – разряд единиц,

8 – разряд десятков,

9 – разряд сотен,

7 – разряд тысяч,

5 – разряд десятков тысяч,

4 – разряд сотен тысяч,
3 – разряд миллионов.
Ответ: а) 3 4 57 987≈3 5 00 000 разряд сотен тысяч б) 4 57 3 426≈4 57 3 000 разряд тысяч в)1 6 7 841≈1 7 0 000 разряд десятков тысяч.

Пример №2:
Округлите число до разрядов 5 999 994: а) десятков б) сотен в) миллионов.
Ответ: а) 5 999 99 4 ≈5 999 990 б) 5 999 9 9 4≈6 000 000 (т.к. разряды сотен, тысяч, десятков тысяч, сотен тысяч цифра 9, каждый разряд увеличился на 1) 5 9 99 994≈6 000 000.

В данной публикации мы рассмотрим, каким образом можно округлить десятичные дроби до разных разрядов дробной (десятых, сотых, тысячных и т.д.) и целой (единиц, десятков, сотен и т.д.) частей. Также разберем примеры для лучшего понимания и закрепления материала.

  • Правила округления десятичной дроби
    • Округление дробной части
    • Округление до целого числа
    • Особый случай: последняя цифра – ноль

Правила округления десятичной дроби

Десятичную дробь можно округлить:

  • до целого числа с точностью до единиц, десятков, сотен и т.д.;
  • до определенного разряда дробной части: десятых, сотых, тысячных, десятитысячных и т.д.

Но, прежде чем перейти к правилам округления, давайте еще раз вспомним, из чего состоит десятичная дробь. В качестве примера – от тысяч до десятитысячных:

Округление дробной части

Итак, чтобы выполнить округление десятичной дроби, придерживаемся следующего плана действий:

  1. Отмечаем разряд, до которого следует округлить дробь. Его можно отделить от следом идущих цифр разделительной линией.
  2. Далее возможно два варианта (согласно правилам округления чисел):
    • если после выбранного разряда идут цифры 0, 1, 2, 3 или 4, то цифру этого разряда мы оставляем той же, а все остальные цифры после линии убираем.
    • если после выбранного разряда стоят цифры 5, 6, 7, 8 или 9, то к цифре этого разряда прибавляем единицу и, как в пункте выше, все цифры с правой стороны от линии убираем.

Пример 1: округлим 12,624 до десятых.

Пример 2: округлим 5,176 до сотых.

Округление до целого числа

Если десятичную дробь требуется округлить до целого числа (до единиц), смотрим на цифру, которая идет сразу же после запятой (разряд – десятые). Если это 5, 6, 7, 8 или 9, то к единицам в целой части прибавляем число 1, а всю дробную часть отбрасываем. В остальных случаях просто убираем дробную часть без каких-либо изменений целой части.

Примеры округления десятичных дробей до целого числа:

  • 2,15 ≈ 2;
  • 4,64 ≈ 5;
  • 7,063 ≈ 7;
  • 12,814 ≈ 13.

Примечание: Если дробь требуется округлить до целого числа большего разряда, чем единицы (десятки, сотни, тысячи и т.д.), отбрасываем дробную часть, затем округляем полученный результат согласно правилам округления натуральных чисел.

Пример 1: выполним округление до десятков числа 156,71:

Пример 2: выполним округление до сотен числа 8134,145:

Особый случай: последняя цифра – ноль

Если в результате округления десятичной дроби последней цифрой в дробной части остается 0, его нельзя убирать. Это нужно для того, чтобы наглядно было понято, до какого разряда было выполнено округление.

Примеры округления с нулем на конце

Остановимся подробнее на втором примере. Т.к. в следующем разряде после сотых стоит цифра 9, значит по правилам округления к сотым мы прибавляем единицу: 9 + 1 = 10. Следовательно, в разряде сотых мы пишем ноль, а единицу прибавляем к десятым (1 + 1 = 2).

Числа округляют, когда полная точность не нужна или невозможна.

Округлить число до определенной цифры (знака), значит заменить его близким по значению числом с нулями на конце.

Натуральные числа округляют до десятков, сотен, тысяч и т.д. Названия цифр в разрядах натурального числа можно вспомнить в теме натуральные числа.

В зависимости от того, до какого разряда надо округлить число, мы заменяем нулями цифру в разрядах единиц, десятков и т.д.

Если число округляется до десятков, то нулями заменяем цифру в разряде единицы.

Если число округляется до сотен, то цифра ноль должна стоять и в разряде единиц, и в разряде десятков.

Число, полученное при округлении, называют приближённым значением данного числа.

Записывают результат округления после специального знака « ≈ ». Этот знак читается как «приближённо равно».

При округлении натурального числа до какого-либо разряда надо воспользоваться правилами округления.

  1. Подчеркнуть цифру разряда, до которого надо округлить число.
  2. Отделить все цифры, стоящие справа этого разряда вертикальной чертой.
  3. Если справа от подчёркнутой цифры стоит цифра 0, 1, 2, 3 или 4 , то все цифры, которые отделены справа, заменяются нулями. Цифру разряда, до которой округляли, оставляем без изменений.
  4. Если справа от подчёркнутой цифры стоит цифра 5, 6, 7, 8 или 9 , то все цифры, которые отделены справа, заменяются нулями, а к цифре разряда, до которой округляли, прибавляется 1 .

Поясним на примере. Округлим 57 861 до тысяч. Выполним первые два пункта из правил округления.

После подчёркнутой цифры стоит цифра 8 , значит к цифре разряда тысяч (у нас это 7 ) прибавим 1 , а все цифры, отделённые вертикальной чертой заменим нулями.

Теперь округлим 756 485 до сотен.

Округлим 364 до десятков.

3 6 |4 ≈ 360 — в разряде единиц стоит 4 , поэтому мы оставляем 6 в разряде десятков без изменений.

На числовой оси число 364 заключено между двумя «круглыми» числами 360 и 370 . Эти два числа называют приближёнными значениями числа 364 с точностью до десятков.

Число 360 — приближённое значение с недостатком, а число 370 — приближённое значение с избытком.

В нашем случае, округлив 364 до десятков, мы получили, 360 — приближённое значение с недостатком.

Округлённые результаты часто записывают без нулей, добавляя сокращения «тыс.» (тысяча), «млн.» (миллион) и «млрд.» (миллиард).

  • 8 659 000 = 8 659 тыс.
  • 3 000 000 = 3 млн.

Округление также применяется для прикидочной проверки ответа в вычислениях.

Пусть нам нужно посчитать:

До точного вычисления сделаем прикидку ответа, округлив множители до наивысшего разряда.

794 · 52 ≈ 800 · 50 ≈ 40 000

Делаем вывод, что ответ будет близок к 40 000 .

794 · 52 = 41 228

Аналогично можно выполнять прикидку округлением и при делении чисел.

1.1. Значащие цифры данного числа — это все цифры от первой слева, не равной нулю, до последней записанной цифры справа. При этом нули, следующие из множителя 10 n , не учитываются.

имеет три значащие цифры;

имеет две значащие цифры;

3. Число 120·10 3

имеет три значащие цифры;

имеет три значащие цифры;

имеет две значащие цифры.

1.2. Когда необходимо указать, что число является точным, после числа должно быть указано слово «точно» или же последняя значащая цифра печатается жирным шрифтом

Пример. В печатном тексте:

1 кВт·ч = 3 600 000 Дж (точно), или = 3600000 Дж

1.3. Следует различать записи приближенных чисел по количеству значащих цифр.

1. Следует различать числа 2,4 и 2,40. Запись 2,4 означает, что верны только цифры целых и десятых; истинное значение числа может быть например 2,43 и 2,38. Запись 2,40 означает, что верны и сотые доли числа; истинное число может быть 2,403 и 2,398, но не 2,421 и не 2,382.

Утвержден Постоянной Комиссией по стандартизации
Улан-Батор, июнь 1977 г.

2. Запись 382 означает, что все цифры верны; если за последнюю цифру ручаться нельзя, то число должно быть записано 3,8·10 2 .

3. Если в числе 4720 верны лишь две первые цифры оно должно быть записано 47·10 2 или 4,7·10 3 .

1.4. Число, для которого указывается допускаемое отклонение, должно иметь последнюю значащую цифру того же разряда как и последняя значащая цифра отклонения.

1.5. Числовые значения величины и ее погрешности (отклонения) целесообразно записывать с указанием одной и той же единицы физических величин.

Пример. 80,555±0,002 кг

1.6. Интервалы между числовыми значениями величин следует записывать:

От 60 до 100 или от 60 до 100

Свыше 100 до 120 или свыше 100 до 120

Свыше 120 до 150 или свыше 120 до 150.

1.7. Числовые значения величин должны указываться в стандартах с одинаковым числом разрядов, которое необходимо для обеспечения требуемых эксплуатационных свойств и качества продукции. Запись числовых значений величин до первого, второго, третьего и т. д. десятичного знака для различных типоразмеров, видов марок продукции одного названия, как правило, должна быть одинаковой. Например, если градация толщины стальной горячекатаной ленты 0,25 мм, то весь ряд толщин ленты должен быть указан с точностью до второго десятичного знака.

В зависимости от технической характеристики и назначения продукции количество десятичных знаков числовых значений величин одного и того же параметра, размера, показателя или нормы может иметь несколько ступеней (групп) и должно быть одинаковым только внутри этой ступени (группы).

2.1. Округление числа представляет собой отбрасывание значащих цифр справа до определенного разряда с возможным изменением цифры этого разряда.

Пример. Округление числа 132,48 до четырех значащих цифр будет 132,5.

2.2. В случае, если первая из отбрасываемых цифр (считая слева направо) меньше 5, то последняя сохраняемая цифра не меняется.

Пример. Округление числа 12,23 до трех значащих цифр дает 12,2.

2.3. В случае, если первая из отбрасываемых цифр (считая слева направо) равна 5, то последняя сохраняемая цифра увеличивается на единицу.

Пример. Округление числа 0,145 до двух значащих цифр дает 0,15.

Примечание. В тех случаях, когда следует учитывать результаты предыдущих округлений, следует поступать следующим образом:

1) если отбрасываемая цифра получилась в результате предыдущего округления в большую сторону, то последняя сохраняемая цифра сохраняется;

Пример. Округление до одной значащей цифры числа 0,15 (полученного после округления числа 0,149) дает 0,1.

2) если отбрасываемая цифра получилась в результате предыдущего округления в меньшую сторону, то последняя оставшаяся цифра увеличивается на единицу (с переходом при необходимости в следующие разряды).

Пример. Округление числа 0,25 (полученного в результате предыдущего округления числа 0,252) дает 0,3.

2.4. В случае, если первая из отбрасываемых цифр (считая слева направо) больше 5, то последняя сохраняемая цифра увеличивается на единицу.

Пример. Округление числа 0,156 до двух значащих цифр дает 0,16.

2.5. Округление следует выполнять сразу до желаемого количества значащих цифр, а не по этапам.

Пример. Округление числа 565,46 до трех значащих цифр производится непосредственно на 565. Округление по этапам привело бы к:

565,46 в I этапе — к 565,5,

а во II этапе — 566 (ошибочно).

2.6. Целые числа округляют по тем же правилам, как и дробные.

Пример. Округление числа 12 456 до двух значащих цифр дает 12·10 3 .

ИНФОРМАЦИОННЫЕ ДАННЫЕ

1. Автор — делегация ВНР в Постоянной Комиссии по стандартизации.

3. Стандарт СЭВ утвержден на 41-м заседании ПКС.

4. Сроки начала применения стандарта СЭВ:

Страны — члены СЭВ

Срок начала применения стандарта СЭВ в договорно-правовых отношениях по экономическому и научно-техническому сотрудничеству

Срок начала применения стандарта СЭВ в народном хозяйстве

Числа округляют, когда полная точность не нужна или невозможна.

Округлить число до определенной цифры (знака), значит заменить его близким по значению числом с нулями на конце.

Натуральные числа округляют до десятков, сотен, тысяч и т.д. Названия цифр в разрядах натурального числа можно вспомнить в теме натуральные числа.

В зависимости от того, до какого разряда надо округлить число, мы заменяем нулями цифру в разрядах единиц, десятков и т.д.

Если число округляется до десятков, то нулями заменяем цифру в разряде единицы.

Если число округляется до сотен, то цифра ноль должна стоять и в разряде единиц, и в разряде десятков.

Число, полученное при округлении, называют приближённым значением данного числа.

Записывают результат округления после специального знака « ≈ ». Этот знак читается как «приближённо равно».

При округлении натурального числа до какого-либо разряда надо воспользоваться правилами округления.

  1. Подчеркнуть цифру разряда, до которого надо округлить число.
  2. Отделить все цифры, стоящие справа этого разряда вертикальной чертой.
  3. Если справа от подчёркнутой цифры стоит цифра 0, 1, 2, 3 или 4 , то все цифры, которые отделены справа, заменяются нулями. Цифру разряда, до которой округляли, оставляем без изменений.
  4. Если справа от подчёркнутой цифры стоит цифра 5, 6, 7, 8 или 9 , то все цифры, которые отделены справа, заменяются нулями, а к цифре разряда, до которой округляли, прибавляется 1 .

Поясним на примере. Округлим 57 861 до тысяч. Выполним первые два пункта из правил округления.

После подчёркнутой цифры стоит цифра 8 , значит к цифре разряда тысяч (у нас это 7 ) прибавим 1 , а все цифры, отделённые вертикальной чертой заменим нулями.

Теперь округлим 756 485 до сотен.

Округлим 364 до десятков.

3 6 |4 ≈ 360 — в разряде единиц стоит 4 , поэтому мы оставляем 6 в разряде десятков без изменений.

На числовой оси число 364 заключено между двумя «круглыми» числами 360 и 370 . Эти два числа называют приближёнными значениями числа 364 с точностью до десятков.

Число 360 — приближённое значение с недостатком, а число 370 — приближённое значение с избытком.

В нашем случае, округлив 364 до десятков, мы получили, 360 — приближённое значение с недостатком.

Округлённые результаты часто записывают без нулей, добавляя сокращения «тыс.» (тысяча), «млн.» (миллион) и «млрд.» (миллиард).

  • 8 659 000 = 8 659 тыс.
  • 3 000 000 = 3 млн.

Округление также применяется для прикидочной проверки ответа в вычислениях.

Пусть нам нужно посчитать:

До точного вычисления сделаем прикидку ответа, округлив множители до наивысшего разряда.

794 · 52 ≈ 800 · 50 ≈ 40 000

Делаем вывод, что ответ будет близок к 40 000 .

794 · 52 = 41 228

Аналогично можно выполнять прикидку округлением и при делении чисел.

Числа, с которыми нам приходится иметь дело в реальной жизни, бывают двух типов. Одни в точности передают истинную величину, другие — только приблизительную. Первые называют точными, вторые — приближёнными.

В реальной жизни чаще всего пользуются приближёнными числами вместо точных, так как последние обычно не требуются. Например, приближённые значения используются при указании таких величин как длина или вес. Во многих же случаях точное число найти невозможно.

Правила округления

Для получения приближённого значения, полученное в результате каких-либо действий число нужно округлить, то есть заменить его ближайшим круглым числом.

Числа всегда округляют до определённого разряда. Натуральные числа округляются до десятков, сотен, тысяч и т. д. При округлении чисел до десятков, их заменяют круглыми числами, состоящими только из целых десятков, у таких чисел в разряде единиц стоят нули. При округлении до сотен, числа заменяются на более круглые , состоящие только из целых сотен, то есть нули стоят уже и в разряде единиц, и в разряде десятков. И так далее.

Десятичные дроби можно округлять так же как и натуральные числа, то есть до десятков, сотен и т. д. Но также их можно округлять и до десятых, сотых, тысячных частей и т. д. При округлении десятичных знаков разряды не заполняются нулями, а просто отбрасываются. В обоих случаях округление производится по определённому правилу:

Если отбрасываемая цифра больше или равна 5, то предыдущую нужно увеличить на единицу, а если меньше 5, то предыдущая цифра не меняется.

Рассмотрим несколько примеров округления чисел:

  • Округлить 43152 до тысяч. Здесь надо отбросить 152 единицы, так как справа от разряда тысяч стоит цифра 1, то предыдущую цифру отставляем без изменений. Приближённое значение числа 43152, округлённое до тысяч будет равно 43000.
  • Округлить 43152 до сотен. Первая из отбрасываемых чисел 5, значит предыдущую цифру увеличиваем на единицу:

Округлить 43152 до десятков:

Округлить 17,7438 до единиц:

Округлить 17,7438 до десятых:

Округлить 17,7438 до сотых:

Округлить 17,7438 до тысячных:

Знак ≈ называют знаком приближённого равенства, он читается — приближённо равно .

Если при округлении числа результат получился больше начального значения, то полученное значение называется приближённым значением с избытком, если меньше — приближённым значением с недостатком:

7928 ≈ 8000,
число 8000 — приближённое значением с избытком,

5102 ≈ 5000,
число 5000 — приближённое значением с недостатком.

1.1. Значащие цифры данного числа — это все цифры от первой слева, не равной нулю, до последней записанной цифры справа. При этом нули, следующие из множителя 10 n , не учитываются.

имеет три значащие цифры;

имеет две значащие цифры;

3. Число 120·10 3

имеет три значащие цифры;

имеет три значащие цифры;

имеет две значащие цифры.

1.2. Когда необходимо указать, что число является точным, после числа должно быть указано слово «точно» или же последняя значащая цифра печатается жирным шрифтом

Пример. В печатном тексте:

1 кВт·ч = 3 600 000 Дж (точно), или = 3600000 Дж

1.3. Следует различать записи приближенных чисел по количеству значащих цифр.

1. Следует различать числа 2,4 и 2,40. Запись 2,4 означает, что верны только цифры целых и десятых; истинное значение числа может быть например 2,43 и 2,38. Запись 2,40 означает, что верны и сотые доли числа; истинное число может быть 2,403 и 2,398, но не 2,421 и не 2,382.

Утвержден Постоянной Комиссией по стандартизации
Улан-Батор, июнь 1977 г.

2. Запись 382 означает, что все цифры верны; если за последнюю цифру ручаться нельзя, то число должно быть записано 3,8·10 2 .

3. Если в числе 4720 верны лишь две первые цифры оно должно быть записано 47 · 10 2 или 4,7·10 3 .

1.4. Число, для которого указывается допускаемое отклонение, должно иметь последнюю значащую цифру того же разряда как и последняя значащая цифра отклонения.

1.5. Числовые значения величины и ее погрешности (отклонения) целесообразно записывать с указанием одной и той же единицы физических величин.

Пример. 80,555±0,002 кг

1.6. Интервалы между числовыми значениями величин следует записывать:

От 60 до 100 или от 60 до 100

Свыше 100 до 120 или свыше 100 до 120

Свыше 120 до 150 или свыше 120 до 150.

1.7. Числовые значения величин должны указываться в стандартах с одинаковым числом разрядов, которое необходимо для обеспечения требуемых эксплуатационных свойств и качества продукции. Запись числовых значений величин до первого, второго, третьего и т. д. десятичного знака для различных типоразмеров, видов марок продукции одного названия, как правило, должна быть одинаковой. Например, если градация толщины стальной горячекатаной ленты 0,25 мм, то весь ряд толщин ленты должен быть указан с точностью до второго десятичного знака.

В зависимости от технической характеристики и назначения продукции количество десятичных знаков числовых значений величин одного и того же параметра, размера, показателя или нормы может иметь несколько ступеней (групп) и должно быть одинаковым только внутри этой ступени (группы).

2.1. Округление числа представляет собой отбрасывание значащих цифр справа до определенного разряда с возможным изменением цифры этого разряда.

Пример. Округление числа 132,48 до четырех значащих цифр будет 132,5.

2.2. В случае, если первая из отбрасываемых цифр (считая слева направо) меньше 5, то последняя сохраняемая цифра не меняется.

Пример. Округление числа 12,23 до трех значащих цифр дает 12,2.

2.3. В случае, если первая из отбрасываемых цифр (считая слева направо) равна 5, то последняя сохраняемая цифра увеличивается на единицу.

Пример. Округление числа 0,145 до двух значащих цифр дает 0,15.

Примечание. В тех случаях, когда следует учитывать результаты предыдущих округлений, следует поступать следующим образом:

1) если отбрасываемая цифра получилась в результате предыдущего округления в большую сторону, то последняя сохраняемая цифра сохраняется;

Пример. Округление до одной значащей цифры числа 0,15 (полученного после округления числа 0,149) дает 0,1.

2) если отбрасываемая цифра получилась в результате предыдущего округления в меньшую сторону, то последняя оставшаяся цифра увеличивается на единицу (с переходом при необходимости в следующие разряды).

Пример. Округление числа 0,25 (полученного в результате предыдущего округления числа 0,252) дает 0,3.

2.4. В случае, если первая из отбрасываемых цифр (считая слева направо) больше 5, то последняя сохраняемая цифра увеличивается на единицу.

Пример. Округление числа 0,156 до двух значащих цифр дает 0,16.

2.5. Округление следует выполнять сразу до желаемого количества значащих цифр, а не по этапам.

Пример. Округление числа 565,46 до трех значащих цифр производится непосредственно на 565. Округление по этапам привело бы к:

565,46 в I этапе — к 565,5,

а во II этапе — 566 (ошибочно).

2.6. Целые числа округляют по тем же правилам, как и дробные.

Пример. Округление числа 12 456 до двух значащих цифр дает 12·10 3 .

ИНФОРМАЦИОННЫЕ ДАННЫЕ

1. Автор — делегация ВНР в Постоянной Комиссии по стандартизации.

3. Стандарт СЭВ утвержден на 41-м заседании ПКС.

4. Сроки начала применения стандарта СЭВ:

Страны — члены СЭВ

Срок начала применения стандарта СЭВ в договорно-правовых отношениях по экономическому и научно-техническому сотрудничеству

Срок начала применения стандарта СЭВ в народном хозяйстве